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Abstract. We are looking for such positions of the intermediate absolutely rigid hinge support
of the two-span rod at which its first critical force reaches its maximum. The one end of the rod is
supported on an absolutely rigid support, and in addition is elastically or rigidly built-in. The second
end is pivotally supported on an elastic support of finite stiffness. The bending stiffness of the rod
varies along its length according to an arbitrary law. The compressive force in all sections of the rod
is the same. It was established that the qualitative characterization of the positions sought, as well as
the corresponding critical forces and buckling modes, depend on the stiffness characteristics of the
elastic constraints at the ends of the rod. Three ranges of varying in the values of the stiffness
coefficient of the end support are determined, which correspond to qualitatively different solutions
to the problem. For the lowest of them, the optimal position is the end of the rod, supported by an
elastic support. For the middle range, the optimal position is the intermediate cross section of the
rod, in which the bending moment at buckling is zero. This position separates a fragment resting on
an elastic support, which deforms when it buckles, like an insulated rod hinged at its ends on
absolutely rigid supports. The rest of the rod at buckling remains undeformed. Thus, with the values
of the stiffness coefficient of the end elastic support from the middle range, the most stable two-
span rod buckles in a special semi-curved mode. For the third, higher range, the optimal position is
the node of the second buckling mode of the rod formed from original rod by remove the
intermediate support. The sought maximum of the critical force is equal to the second critical force
of the single-span rod freed from the intermediate support. The results of the work are obtained on
the basis of the systematic use of qualitative methods of the rod systems theory stability, in
particular, relating to the influence of setting of constraints on critical forces. They can be used in
the design and operation of engineering structures containing compressed members.
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Introduction. Providing the stability of the compressed elements of engineering
constructions is the important factor of their reliable and safe exploitation. One of effective ways of
this task solution is strengthening of these elements by setting and rational placing of additional
intermediate supports. It is thus necessary to search such positions of the entered supports that
provide the maximal value of critical force (further — CRF) of the compressed element. It is known
that, for example, for a longitudinally compressed rod, pivotally supported at the ends by rigid
supports, reinforced by one intermediate support, this position is the node of the buckling mode
(hereinafter — BM), which corresponds to the 2nd in the spectrum of the CRF of the rod before
strengthening. In general, as a rule, nodes of BM are positions that provide an extremum of the CRF
of a rod reinforced by hinged supports placed in these nodes [1, 2]. However, at the same time,
maximum stability is not guaranteed, for which it is required that the specified extremum be just the
maximum and just the fundamental (smallest) CRF. It may happen that even in the presence of BM
nodes, the maximum CRF will be provided at other positions of the installed supports.

Analysis of recent research. In [3, 4], it was considered and qualitatively described the
determination of such a position of the intermediate hinge support of a two-span rod, one end of which
is supported by an elastic support (Fig. 1, a), at which its CRF reaches its maximum. It has been found
that at certain values of the stiffness of this support, the maximum of the main CRF is achieved at such
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Fig. 1. Two-span rod (a) and its semi-curved BM (b)

a position of the internal support, which corresponds to a semi-curved BM (Fig. 1, 5), which has an
undeformed fragment on one side of this support. CRF corresponding to it is equal to the CRF of

the rod BL hinged at the ends on absolutely rigid supports, and at the same time equal to C~|BL

5

where C is the stiffness coefficient of the elastic support.

As you can see, this BM will not be perturbed if a rigid or elastic clamp will be installed on
the left support. This suggests that in these cases, semi-curved BMs will retain their extreme
properties and will provide the maximum increase in CRF.

The aim of the work is to determine the position of the intermediate rigid hinge support of a
two-span rod S, at which its main CRF reaches a maximum, provided that one of its end supports
has finite stiffness C, and elastic or rigid clamp is set on the other (Fig. 2, a). The bending stiffness
of the rod can vary along its length according to an arbitrary law. The compressive force in all
sections of the rod is the same.

0 X L P 0 L_P 0 L P
a) b) c)
Fig. 2. Rod S to be optimized (a), rod [OL (b) and rod S, (c)

Research Methodology. The results are obtained mainly using qualitative methods. In
particular, the well-known result on the behavior of CRF when setting constraints is systematically
used [1, Ch. V]:

A. The setting of one constraint does not lower any of the CRF, but does not make it higher
than the CRF of next number in the spectrum. The reach of the latter is possible only when
constraint is set just in the node of the corresponding BM.

The followingassumption is also accepted:

B. If in a single-span rod obtained from S by removing the intermediate support and
replacing the elastic support with absolutely rigid one, to cut off some part at the right or left, and
apply the previous conditions of support to the remaining part, then at least two lower CRF will
increase.

This fact is well known for prismatic rods under standard support conditions, moreover, for
the CRF of all numbers. However, with an arbitrary distribution of bending stiffness along the
length of the rod, this assumption may not be satisfied. In rods with extended sections of high
rigidity, alternating with relatively short and flexible elements, the described shortening from the
side of the hinged support in the presence of clamp on the opposite can lead not to growth, but to a
decrease in CRF [5]. In most practical situations, compressed rods (racks, columns) have a
relatively smooth change in bending stiffness along the length that does not break the qualitative
properties of prismatic rods, in particular, of their lowest CRFs. Therefore, Assumption B does not
significantly limit the practical significance of the results obtained in this work.

We note some sufficient conditions under which assumption B is certainly valid.

C. For a rod hinged at the ends on rigid supports, when removing any part of rod and setting
the formed free end on the previous support, all CRFs increase.

Bulletin of Odessa State Academy of Civil Engineering and Architecture, 2020, no. 79, page 17-26



BUILDING STRUCTURES

To verify this, we make a cut and insert a hinge in some inner section of the rod, which is
equivalent to removing one constraint. At the same time, based on A, all CRFs will decrease, but
not lower than the previous one in the spectrum. The second CRF of the formed compound rod
coincides with the CRF of one of the two formed parts, whence statement C follows from A.

Consequence of C. For any distribution of bending stiffness along the length of the rod, there
is a certain range of clamp stiffness values under which assumption C is satisfied.

Indeed, if, at zero stiffness of the clamp the CRF of a shorter rod is higher than the CRF of a
longer one, then as the stiffness increases, this inequality will not be broken instantly, but will
satisfy until the stiffness reaches a certain limit.

The wider sufficient conditions for validity of assumption B are established in [5].

Remark. Further, the stiffness coefficient of the clamp is considered arbitrary. In Fig. 3-5, the
rigid clamp on the support O can be mentally replaced by elastic.

The results of the study. The following notation is used:

(XY) — single-span rod hinged at the ends X and Y on absolutely rigid supports;

[XY) —rod formed from (XY ) by setting of clamp in section X ;

[XY — rod formed from [XY ) by replace of rigid support in Y by elastic one with stiffness
coefficient c;

[OXL — a two-span compound rod formed from [OL by setting of a rigid hinged support and
cutting in the intermediate section X ;

¢=|oy; P(+), P[*), P[* — fundamental (smallest) CRF of rod (), respectively [*), [*;

P =P, P,,...— CRFs of rod [OL (Fig. 2, b) in ascending order;

P°, PY,... — CRFsof rod (OL) in ascending order.

1. First, we establish some properties of the BM and the corresponding CRF of a single-span
rod [OL (Fig. 2, b).

1.1. The rod [OL is formed by installing one constraint in the form of clamp at the left end
from the rod S, hinged at the ends shown in Fig. 2, c. The spectrum of the latter contains all CRFs
of the rod (OL) and one else special CRF, equal to ¢/ which corresponds to the rectilinear BM.

then P <P, <c/ <P}

From the statement A above, in particular, it follows that if P} <c/ <P} 1

j+
0 0
and P <cl <P, <P.

1.2. All CRFs of rod [OL are simple. Otherwise, for some CRF, there would be two linearly
independent distributions of bending moments along the length, from which we could linearly
compose a distribution with a zero derivative of the moment on the support L, what, since the
moment itself on this support is equal to zero, would mean that the composed distribution is
identical zero, i.e., that these distributions are linearly dependent.

1.3. When ¢ < Plo/f the first BM (Fig. 3, a) has no nodes, i.e. points, which deflection is zero.

Fig. 3. First () and second (b) BM rod [OL when ¢ <P /¢

This follows from the fact that at buckling, the moment of the resultant compressive force P and
the reaction of the elastic support about O is equal to (cE—P)f, where f is the transverse

displacement of the point L, and P by virtue of A satisfies the inequalities ¢/ < P < P”.
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Geometrically, this means that the line of action of this resultant (dashed line), when the right end
of the rod displace down, passes below the clamped section O, as a result of which the neighborhood of
this section is convex upward. The main BM does not have inflection points (where the bending

moment is zero), because otherwise it would be P = P(ML)> R, where M is the inflection point,
since (ML) is obtained from (OL) by a shortening causing an increase in CRF (see statement C above).
The second BM (Fig. 3, b), for which ¢/ < P® < P, <P}, has one inflection point M , because
otherwise P,, equal to one of the higher CRF of the rod (ML) obtained from (OL) by shortening,
would be higher then P,. Moreover, as can be seen from Fig. 3, b, the second BM has no nodes.
1.4. When ¢ > Plo/e the first BM (Fig. 4, a) has one node A, because now the dashed line of

Fig. 4. 1stBM of arod [OL at ¢ > P’/¢ (a) and 2nd BM of arod [OL at ¢ =P/ /¢ (b)

action, due to the relations R’ <P =P(ML)<c/, passes above the clamped section O, which
guarantees the existence of an inflection point M of the axis of the rod located above its equilibrium

position. Two or more inflection points cannot exist, because then it would be P = P(ML)> PJ.0 for
some j > 2 (due to shortening, see statement C), which contradicts the requirement P < P, (Sec. 1.1).

Remark. Inequality ¢ > P° / ¢ is a condition for the existence of anode A and simultaneously is a
condition for the existence of a semi-curved BM (Fig. 1, b) of the rod S [3] when the rigid hinge
support is installed at a point B for which the CRF is equal to c-|BL| = P(BL), moreover, as a result of

setting constraint c¢-|BL|>P=c-|DL| (D - the point of intersection of the dashed line with the

horizontal in Fig. 4, a). It follows that [BL| > |DL, i.e. the point of conjugate B of the semi-curved BM

is located to the left of D (for the main BM of the rod S, corresponding to CRF equal to c- |DL|).
Forthe second BM, when P°/¢ < ¢ <P /¢, remains valid everything that is said about BM

in Fig. 3, b, in particular the absence of nodes. At c¢=P?/¢ (Fig. 4, b) the equalities

P, =P =c/=P(ML) are satisfied, from which it follows that the dashed line passes through the
clamped section O and the 2nd BM has an internal inflection point M and zero bending moments
in the sections O and L. This BM is the 2nd BM of the rod (OL), rotated so that the clamp

reaction on the support O vanishes. When ¢> P2 /7, as follows from the conclusions of Section

1.1, the inequalities P} < P, = P(ML)< ¢/ are satisfied, from which it follows that the dashed line
(Fig. 5) passes above the clamped section O and the 2nd BM has two inflection points M and M,

Fig. 5. 2nd BM of arod [OL at ¢ > P? /¢
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since now, by virtue of formulated above Statement C, P, is equal to the 2nd CRF of the shortened
rod (M,L). If there were more than two inflection points, incompatible inequalities P, > P?,

P, < PY would have to be satisfied. At two inflection points, as one can see from Fig. 5, 2nd BM

has a single node A.

1.5. Let us introduce a number of constants characterizing the system under consideration and
independent of the coefficient c.

Denote by H the point of the rod for which there holds the equality P(HL)= P[OL), i.e. the

point cutting off segment (HL) equally stable (when hinged on rigid end supports) to the entire rod
[OL) hinged on rigid support at L.

E is a point defined by equality P(EL)= P[OE). It divides the rod [OL) into two equally
stable parts [OE) and (EL) (with absolute rigidity of the hinged supports in E and L). By virtue of

assumption B, the point E is unique.
P(EL)=P[OE) is a 2-multiple CRF of a compound rod formed from the [OL) by cutting and

setting of the hinge support in the section E. After setting a constraint that eliminates the cut, it
remains CRF, but already simple, of the rod obtained from the [OL) by installation of the support in

E, increasing CRF. Therefore P(EL)> P[OL)=P(HL)=
P(EL)> P(HL)=|EL| <|HL. (1)
1.6. In cases where the second BM has a node A (at ¢ > PZO/E), it can place to the right or left

of the inflection point M (compare Fig. 5, a and 5, b). We establish the following statement.
Criterion of node location. The node A of the second BM of rod [OL :

— lies to the left of the inflection point M for ¢ < P(EL )/|EL|;
— lies to the right of the inflection point M for ¢ > P(EL )/|EL|;
— coincides with the inflection point M when ¢ = P(EL)/|EL];

With growth ¢ from PP /¢ to oo, the point D of intersection of the dashed line with the
horizontal in Fig. 5 (for which c-|DL| = P,, because the moment of external forces about D is equal

to zero) moves from O to L. The fragment ML, at the ends of which the bending moments are
equal to zero, when buckling deforms like a rod on hinges, which is shortened because the CRF
growth due to growth of c. Therefore, the point M moves monotonously to the right, but within

the limits restricted by the node of the second BM of the rod (OL) (when c= on/f) and the
position for which P(ML)=P? (since P} <P, <P’). Obviously, at some ¢ these points, and with

them the node A, which, as one can see from Fig. 5, a and 5, b, lie between M and D must
coincide. We prove that this happens only once, i.e. at the single value of c¢. The point M when
coincides with D is the node A of the 2nd BM of the rod [OL and divides the rod into two equally

stable parts [OA) and (AL). This follows from the fact that when they buckle under the action of
force P,, each of them deforms as an independent rod, supported at a point A on a rigid hinge.
Therefore, the point M = D = A of «triple coincidence» must satisfy the condition P(ML)= P[OM),

whence it follows that it is the point introduced earlier in sec. 1.5 and the only single, as follows
from its definition. The corresponding value of the stiffness coefficient is equal to

c= P(ML)/|DL| = P(EL)/|EL|, whence the validity of the criterion follows.
Remark. When ¢ =P(EL)/[EL| CRF of the right side of the compound rod [OEL is equal to

P(EL)=c~|EL| and is 2-multiple, since in addition to the main BM of the rod (EL), it also
corresponds to the rectilinear BM of the fragment EL, rotated about E due to vertical displacement
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of the support L. Therefore, in the spectrum of the entire rod [OEL, together with the CRF
P[OE)= P(EL) of the left part, it is 3-multiple. After imposing a constraint that eliminates the cut in
the section E and forms the rod S, it becomes 2-multiple. The corresponding BMs can be selected
semi-curved. One of them has the form shown in Fig. 1, b. The second represents a special case of a
semi-curved BM, when the right part is inclined, remaining straightforward.

2. Studying the influence of the position of the support on simple CRFs of multi-span rods,
we use the relation [2]:

P'=RO, )

where P’ is the derivative of simple CRF with respect to the coordinate equal to the distance
of the support from the left end of the rod, R is reaction of support (positive when acting upward),
0 is the slope of the section of BM (positive when the section inclines clockwise) above the support
(with the corresponding normalization).

The solution to the problem of finding the optimal location of the intermediate support is
presented in the following statements.

2.1. When ¢ < P[OL)/|HL| = P(HL)/|HL| the maximum of CRF of the rod S is achieved

when installing the support on the right end L of the rod and is equal to P, ,, = P[OL)< P,.

To prove this, we note that when a rigid support is installed at a point L and its reaction
direct upward (R >0), the bent axis of the rod at buckling by the first BM (with one inflection
point) places wholly above its equilibrium position, whence 6(L)>0 and according to (2) P'>0.
Therefore, the CRF when the support moves to the left of L (in the direction of decreasing
coordinates) decreases. Inside the segment OL, there may exist extremal positions of the support, in
which, according to (2), R either 6 vanishes.

With the restriction on value of ¢ noted at the statement 2.1, taking into account (1):

¢ < P[OL)/|HU = P(HL)/|HL| < P(EL)/|EL].

Therefore, according to the criterion of Sec. 1.6, the node A of the second BM of the rod [OL
(if exist) is located to the left of the inflection point M (Fig. 5, a). Let us prove that in this case,
when the support is installed in A the CRF of the rod S will smaller than P,. We form a

compound rod [OAL with a hinge support in A. Spectrum of its CRF includes the spectrum of the
right-hand part, which consists of all the CRF of the rod (AL) and one especial CRF, which is equal
to ¢-|AL| and which corresponds to a straight-line BM. From inequality |AL|>|ML| follow relations

P(AL)<P(ML)=P,=c-|DL| and c-|AL|<c-|DL|. This means that in the spectrum of the rod

[OAL there are at least two CRF, smaller than P,. One constraint eliminating the cut in section A
can increase the CRF to no more than the second, whence CRF of S is less than P,. It follows that
the second BM of the rod [OL with the node in A cannot correspond to the main CRF of the rod S .

Therefore, if in some position of the intermediate support when the rod S buckles at the main BM,
it occurs that R =0 this means that the support is placed in the node of the first BM of the rod
[OL and the CRF has a minimum equal to P,.

If in some position of the support it occurs that 6 = 0 and the rod is deformed on both sides of
support, then the corresponding BM is also not the fundamental one. To verify this, we set in the
section under consideration a constraint in the form of a rigid clamp that does not influence the BM.
This constraint makes the corresponding CRF 2-multiple, which corresponds to the BMs, remaining
on one side of the support undeformed and horizontal. It follows that before the clamp was
installed, there should have been a smaller CRF, which was the main one.

Thus, equality 6 =0 in the case of the main CRF can only be realized on a semi-curved BM
(Fig. 1, b) when the support is installed at the point B of its conjugation and (see the remark in
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Section 1.4) only if there is a node A of the main BM of the rod [OL that lies to the right of D
(Fig. 4, a), and therefore to the right of B. At this case, CRF has a local maximum equal to
P(BL)=c-|BL], and there hold relation P(BL)/|BL|=c < P(HL)/|HL whence it follows that B lies
to the left of H, so this maximum is equal to P(BL)< P(HL)= P[OL). Statement 2.1 is proved.

2.2. At P[OL)/|HU < ¢ < P(EL)/|EL], the maximum CRF of the rod S is achieved when the
support is installed at the point B of conjugation of the semi-curved BM (Fig. 1, b), located
between sections H and E (see Section 1.5), and is equal to P,,,=P(BL)=c-|BL|<P,.

To prove this, we note that under the restrictions on ¢ specified in the formulation, the node
A of the second BM of the rod [OL is located to the left of the inflection point M (Fig. 5, a).

Since ¢>P[OL)/|HL|>P’/¢, the rod S has a semi-curved BM with corresponding CRF

equal to P(BL):C-|BL|. Just as in the proof of Statement 2.1, we see that to the right of the

conjugation point B there is only one extremum point of the main CRF — this is the node of the first
BM that provides a minimum of CRF. To the right of it there is an increase of CRF, because
nowhere else P’ does equal to zero, but in this case, CRF can only reach a value

P[OL)=P(HL)<c-|[HL|. The last inequality means that the «oot» B of the equation
P(XL)=c-|XL| defining a semi-curved BM lies to the right of H, whence follows
P(BL)> P(HL)= P[OL). In the same way, from ¢ < P(EL)/|EL| it follows that B lies to the left of

E . The node of the 2nd BM of the rod [OL cannot be a position providing a maximum of the CRF
of the rod S, which proves in the same way as in section 2.1. Therefore, except B, there are no
points to the left of the node of the 1st BM of the rod [OL, where P’ = R&=0. As one can see from

Fig. 5, a ¢:|DL|=P, =P(ML)> P(DL). It follows that the «root» B of the equation P(XL)=c-|XL|
lies to the right of D and P(BL)=c-|BL|<c-|DL|=P,. Statement 2.2 is proved.

2.3. At ¢>P[EL)/|EL], the maximum CRF of the rod S is reached when the support is
installed in the node A of the second BM of the rod [OL and is equal to P, = P,.

Consider a compound rod [OAL with support in A. According to the criterion from section
1.6, P(AL)>P(ML)=P,, c:|AL|>c-|DL =P,, so that all the CRF of the right part > P,. For the

left part [OA), by virtue of Assumption B, the second CRF is larger than the second CRF of the
longer rod [OL), which in turn is larger than the 2nd CRF of the rod [OL (due to the deformability
of the support L). Thus, in the spectrum of the rod [OAL there is exactly one CRF P[OA) <P,.
After elimination of the cut in A CRF becomes equal to P,. Otherwise (assuming that the main
CRF of the rod S <P,) P, would not belong to the spectrum of S, despite the fact that the support
is placed in the node of the corresponding BM. At other positions X of the support (not in A) the
CRF of the rod S < P,, because the support does not locate in the node of the 2nd BM of the rod
[OL. Statement 2.3 is proved.

Remark. Considerations of sections 2.2 and 2.3 allow us to conclude that B as the «root» of
equation P(XL)= c-|XL|, like the node A of the 2nd BM of the rod [OL, lies between D and M .

2.4. The conclusions of the previous section 2.3 remain valid in the extreme case of absolutely
rigid hinge support L (c =oo). However, since it may occur that the second BM of the rod [OL
does not have nodes (Fig. 6), this case deserves special consideration.
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a) 6, >0 b) 6, =0
Fig. 6. 2nd BM of arod [OL in the absence of nodes

The end section L can be turned clockwise, 6, >0 (Fig. 6 a), or have a zero slope, 6, =0
(Fig. 6, b). Under the assumptions accepted in the work, the case 6, >0 cannot be realized. This
follows from the fact that, as was established in [6], the combination of the directions of the slope of
the cross section L, the reaction R and the concavity of the 2nd BM of the rod [OL) in the
neighborhood of the support L, shown in Fig. 6, a, is a sign of the growth of its 2nd CRF with

elongation of the rod by attaching a portion to the right and moving the hinge support to the end of
the formed rod. The noted growth contradicts to the statement B.

According to the results of [6], equality 6, =0 is the condition for the maximum of the
2nd CRF at elongation, if the setting of a rigid clamp in the cross section L retains P, in the
spectrum along with its number, i.e. does not increase the main CRF to P,, and the condition of
minimum or decrease of the 2nd CRF, if after installing this clamp P, becomes the main.

Since the case of a maximum contradicts statement B, equality 6, =0 can only be realized if
a rigid clamp at the right end of the rod raises the main CRF to P, . This clamp can be considered as
the installation of a rigid hinge support in the rod [OL) infinitely close to L, whence it follows that
this position is optimal, because in all other positions, in the absence of nodes of the 2nd BM of the
rod [OL), a value of CRF equal to P, is not achieved.

Above the restrictions on stiffness ¢ expressed by inequalities were considered.
Consideration of boundary values of ¢ is not difficult. Therefore, we restrict ourselves only to the
formulating of the corresponding results.

2.5. At ¢ = P[OL)/|HL|, there are two positions of the support at which the CRF of the rod S

reaches a maximum equal to P[OL). One of them is the right end L of the rod, the second is the
point H, which in this case is the point of conjugation of the semi-curved BM.
2.6. At ¢ =P[EL)/|EL|, the maximum CRF of the rod S is achieved when the support is

installed in the node A of the second BM of the rod [OL and is equal to P, ,,=P,. This CRF is 2-
multiple, and two different semi-curved BMs correspond to it (see the remark in section 1.6).
Conclusions. The paper describes the optimal positions of the intermediate support of a two-span
rod, providing maximum critical force, depending on the stiffness of its end hinge support. The
proposed description is mainly of a qualitative nature and is obtained using mainly qualitative methods.
The results obtained make it possible in simple cases, for example, for prismatic rods under standard
end support conditions, to find the desired positions and the corresponding critical forces and buckling
modes with almost no calculations. In more difficult cases of rods of variable cross-section, they provide
reliable guidelines, based on which, it is possible to solve specific optimization problems for
compressed rods. The presented results generalize the results of [3], in which both ends of the

researched rod were hinged, and pass into them when the clamp stiffness on the support O turns into 0.
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HAMNIB3ITHYTI ®OPMU BTPATHU CTIMKOCTI SIK PE3YJIbTAT OIITUMI3ALIIL
CTUCHYTHUX CTEPKHIB

Bexmaen C.51.
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AHoTanisAg. Po31IyKylOTbCS Taki MOJOKEHHSI BHYTPILIHBOI a0COIIOTHO KOPCTKOI MIApHIPHOT
OTIOpY ABOMPOTIHHOTO CTEPXKHS, MPH SIKUX HOTO0 OCHOBHA KPUTHUYHA CHJIA JIOCSITAE MAaKCHUMYyMY.
OnuH KiHeUb CTep:KHS CIIUPAETHCS HAa aOCOIIOTHO JKOPCTKY ONOpPY 1 Mae J0AATKOBE HpYyKHE a0
a0COIIOTHO KOPCTKE 3ameMiIeHHs. [IpoThuinexHuii KiHels MapHipHO OOMEePTHI Ha MPYKHY OMOpPY
KIHIIEBO1 JKOPCTKOCTI. 3TiHHA YOPCTKICTh CTEPIKHS 3MIHIOETHCS IO WOTO JIOBXHWHI 3a JOBIILHUM
3akoHOM. CTHCKaroya Cujla y BCIX MEpeTHMHaX CTEp:KHsS OJHaKoBa. Y poOOTI BCTAHOBJIEHO, LIO
SKICHAa XapakTepH3allisi pO3LIyKyBaHUX MOJ0XKEHb, a TAKOX BIAMOBIIHI KPUTHYHI CHiM 1 Gopmu
BTpaTH CTIMKOCTI, 3aJI€3KaTh Bl XapaKTEPUCTUK KOPCTKOCTI MPYXKHUX B'sI3ed Ha KIHIIX CTEPKHS.
BusnayeHo Tpu Jianma3oHM 3MIHM 3HA4€Hb KOE(QIliEHTa MXOPCTKOCTI KIHLEBOI OIOpH, SKUM
BIJINMOBI/IAIOTH SIKICHO Pi3HI PO3B’S3KU MOCTaBJIeHOI 3aaa4i. JJis HAWHMKYOTO 3 HUX ONTUMAIbHUM
MOJIOKEHHSIM € KIHEeI[b CTEepXKHs, ONEepTUH Ha MpyxHy omopy. s cepelHbOro MAianazoHy
ONITUMAIIEHUM TIOJIOKEHHSIM € MPOMDKHHIA TIEPETUH CTEPXKHS, B SIKOMY 3THHAJIBHUA MOMEHT TIpU
BTpPAaTi CTIMKOCTI JIOpiBHIOE HYNIO. Lle MonoKeHHs BIIOKpEMIIOE (parMeHT, sIKUil CIIUpaeTbhes Ha
MPYXHY ONOpY, KU 1eOpMy€eTbCs PU BTpaTi CTIMKOCTI, SIK 130JbOBAaHUM CTEpPKEHb, IIAPHIPHO
OnepTUil MO KIHIMAX Ha aOCOJIOTHO KOPCTKI omopu. Pemita crepkHs NHpu BTpaTi CTIMKOCTI
3anuiIaeTbes HeaedopMoBaHow0. TakuM YMHOM, IPU 3HAYEHHSIX Koe(illieHTa dKOPCTKOCTI KIHIIEBOL
IPY)XHOI ONOPU 3 CEPEeJHBOrO Jiama3oHy MaKCHUMaJbHO CTIHKHUN JIBONPOTOHOBHH CTEpkKEHb
BTpayae CTIMKICTh 32 OCOOJMBOIO HAmMiB3ITHYTOIO (QopMmoro. s TpeThoro, BUIIOTO diana3oHy
ONTUMAJIbHUM TIOJIOKEHHSIM € BY30Jl Apyroi (opMu BTpaTH CTIHKOCTI CTEP)KHS, YTBOPEHOTrO i3
PO3TIISIHYTOTO BUIAJICHHSIM TPOMDKHOI omnopu. PosmiykyBaHWiA MaKCHMyM KPHTHYHOI CHIIH
JOPIBHIOE IPYT1i KPUTHYHIN CHIII OJTHOIPOTOHOBOT'O CTEPKHSI, 3BIIBHEHOTO Bijl MPOMIXHOI OMOPH.
Pesynbrati poboTH OTpMMaHI Ha OCHOBI IMOCJIZOBHOTO BHKOPHUCTAHHS SKICHHUX METOJIB TeOpil
CTIMKOCTI CTEP)KHEBUX CHUCTEM, 30KpeMa, THX, 1110 BIIHOCATHCSA 70 BIUIMBY HAaKJIAJeHHS B'A3ei Ha iX
KpUTHYHI cliid. BoHHM MOXYTh OyTH BUKOPHCTaHI MPHU NMPOEKTYBAaHHI Ta €KCIUTyaTallil 1HKEHEPHUX
CHOPY/, SIKI MICTSITh CTUCHYTI €JIEMEHTH.

Kurouosi cioBa: BTpara CTIMKOCTi, CTUCHYTHH CTE€pP)KEeHb, HAaNiB3IrHyTa (hopMa, ONTUMI3AILIS.
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MOJIYU3OTHYTBIE ®OPMbI IOTEPH YCTOMUYNBOCTHU KAK PE3VJIbTAT
ONTUMHU3AIIMU CKATBIX CTEPXKHEN
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AHHoOTanusi. Pa3bICKMBalOTCS Takue TOJIOKEHUS BHYTPEHHEHl aOCOJIIOTHO IKEeCTKOH
LIAPHUPHOM ONOpPBI JABYXIPOJIETHOIO CTEP)KHSA, IPU KOTOPBIX €r0 OCHOBHAs KPUTHYECKAs CHUIIA
nocturaer MakcumyMma. OJUH KOHEI[ CTepKHsS OmepT Ha abCOJIIOTHO KECTKYIO OMOpY, U UMEeT
JIOTIOJIHUTENBHO YIPYroe Wi abCOMIOTHO JKECTKOe 3alieMieHne. Bropoil koHel mapHUpHO OnepT
Ha YOPYTyl0 OMOPY KOHEYHOH >KECTKOCTH. M3rmOHasi KECTKOCTh CTEpXHsS H3MEHSETCS MO €ro
JUIMHE TI0 IPOU3BOJBHOMY 3aKkoHY. (Cxumaromiasi Cujla BO BCEX CEUEHHMSX CTEpXKHS OJIMHAKOBA.
VYCTaHOBIEHO, YTO KauyeCTBEHHAs XapaKTEPUCTHKA pPAa3bICKUBAEMBIX IIOJIOKEHUH, a TaKkxKe
COOTBETCTBYIOLIME KPUTUYECKHE CHIBI M (OpPMBI TOTEPH YCTOHYMBOCTH, 3aBHCAT OT
XapaKTePUCTHK JKECTKOCTH YIPYTUX CBA3€H Ha KOHLAX cTepxkHs. OmpeseseHbl TpU AUana3oHa
W3MEHEHUs 3HaueHuW KodpQUIMEeHTa KECTKOCTH KpailHeil Oomopbl, KOTOPHIM OTBEYAIOT
KAueCTBEHHO pa3jMuYHble pEIICHUs IOCTaBICHHOM 3amaud. Jljig caMoro HHU3KOrOo W3 HHX
ONITUMAJIbHBIM IIOJIOKEHUEM SIBJISIETCSI KOHEL CTEPKHS, ONEPThIN Ha ynpyryto onopy. s cpenHero
JIMana30Ha ONTHUMAJIbHBIM IOJIOKEHHEM SIBJIETCS MPOMEKYTOUHOE CEUYEHUE CTEP’KHSA, B KOTOPOM
U3rubaromuii MOMEHT MpH MOTEPEe YCTOMYMBOCTH PAaBEH HYINI0. OJTO TOJOKEHUE OTIeINseT
(dbparMeHT, ONHMpAIOMMKCA Ha YOPYTYI0 ONOpY, KOTOpBIA nedopMupyeTcs TpH TOTepe
YCTOMYMBOCTH, KaK M30JUPOBAHHBIN CTEPKEHb, MIAPHUPHO OMEPTHIM MO KOHIAM Ha abCOJIIOTHO
xecTkue omnopbl. OcTaBmIasCs YacTb CTEpPKHS MpPU  IOTEpPE YCTOWYMBOCTU  OCTAETCA
HeneopmupoBanHoii. Takum o00pazom, mpu 3HAYEHUAX Kod(duIMEeHTa >KECTKOCTH KpaiHel
YIOPYro ONOpBI U3 CPEAHETO AUANa30Ha MAaKCUMAaJIbHO YCTOMYMBBIM JABYXIIPOJIETHBIN CTEP/KEHb
TepsieT YCTOWYMBOCTH IO 0c000il momyuszornytoii ¢opme. s TpeTbero, BBICIIErO AHMANa3OHa
ONTHMAJIbHBIM IOJIO)KEHUEM OKa3bIBaeTcs y3€ld BTOPOW (hOpMbI MOTEPU YCTONYMBOCTU CTEPIHKHS,
00pa30BaHHOTO M3 pPacCMAaTPUBAEMOrO yJaJeHUEM IPOMEKYTOUHOM oOmophl. Pa3pickuBaemblii
MaKCHUMyM KPUTHYECKON CHJIBI PaBEH BTOPOH KPUTHYECKOH CHJIE OJHOINPOJIETHOIO CTEP)KHS,
OCBOOOKIEHHOTO OT TPOMEKYTOYHON Omopbl. Pe3ynbrarel pabOThl MONTY4EHBI Ha OCHOBE
CHUCTEMAaTUYECKOr0 HMCIOJIb30BaHUS KAaUECTBEHHBIX METOJOB TEOPUM YCTOMUMBOCTH CTEPHKHEBBIX
CUCTEM, B YACTHOCTH, OTHOCSIIIUXCS K BIMSIHUIO HAJOKEHHUS CBSI3€ Ha KPUTUUECKHUE CHUJIBI.

KiroueBble cioBa: moTeps yCTOMYMBOCTH, CXKaTblil CTEp)KeHb, MOIYM30THYTas Qopma,
ONTHUMU3ALINS.
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