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Abstract. It is established that in terms of the discrete Markov process, the problem is reduced to
the search for unconditional probabilities of the system S at an arbitrary step k in state S;, that is,
obtaining a transition probabilities matrix. In this formulation, the model is used for assessing the
technical condition of the element; assessing the level of safety of operation of structural elements;
ranking elements according to the need for repairs, reconstruction or replacement; in strategic planning
of repair or reconstruction costs in conditions of limited funding and forecasting the remaining
resource of elements.

It is established that the theoretical basis of the study, which aims to predict the resource of
hydraulic structures in operation, is the Markov theory of random processes. For a mathematical
description of the process of element degradation, the most successful is the mathematical apparatus of
the Markov random processes.

Determination of the failure intensity parameter is the dominant feature of the Markov
phenomenological model of damage accumulation to hydraulic structures' elements. The only
parameter of lifecycle management is the failure rate A. In the model under consideration, the
parameterA is determined based on the initial conditions for an individual element obtained from the
survey results.

Because the parameter A is determined for an individual element and must be specified each time
after the next survey, the accuracy of the model will increase. The proposed model is integral. It does
not contain an explicit theoretical apparatus for a material-sensitive element, its static scheme,
construction technology, environmental conditions, etc. On the other hand, all these factors and many
other secondary ones are taken into account in the model at the moment the state of the element is
determined using classification tables containing physical and mechanical signs of degradation.

In the theory of structures, the statistical approach to formulating the transition matrix is
widespread and is based on historical data from the structure operation system. It is believed that
the transition matrix based on the data of the operating system is a more realistic basis for
predicting the processes of structures degradation. A large number of foreign studies are devoted to
the practical application of the transition matrix based on statistical data, which consider the
features of transition matrices related to the bridge operation system in different countries. In this
formulation, each element of the transition probability matrix P is the probability that the system in
the state will move to state j in one step (i.e., in one year). At the same time, it is considered that
there are no operational interventions, so the sub-diagonal elements are zero. As before, the sum of
elements of the same line is 1 and the element p;; = 1 because state j is absorbing.
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For the implementation algorithm of the Markov chain model for forecasting the technical
condition of hydraulic structures in general, the initial data are: statistical data of the distribution of
structures by the state at the time of the forecast, the rating assessment of the structure is calculated
by an expert according to the scale and the forecast time in years.

It is established that the degradation properties of structural designs are described by two
parameters: the degradation criterion and the failure rate. Any factor of the stress-strain state can be
taken as a degradation criterion: reliability, internal forces, or deformations. The degradation criterion
can be an arbitrary rating assessment. In our case, the reliability of the element is taken as the
degradation criterion, as the most general factor of the stress-strain state.

Keywords: hydraulic structures, structural degradation of structures, Markov model, service life.

Introduction. The classical a priori formulation of the life cycle of a hydraulic structure here
receives a rigorous scientific justification regarding resource — the structures are associated with
universal models of describing the phenomenological degradation processes of hydraulic structures'
elements by random functions of the Markov type. The central scientific idea of this approach is a
new paradigm of the theory of structures is to establish the relationship between the equations of
boundary States and the variable of operating time.

The problem of estimating and forecasting the resource, as a category of durability, is relevant
not only for the latest hydrotechnical structures but also has an independent extraordinary weight as
a factor of the state strategy for managing and preventing man-made risks. All countries face this
problem, but the problem is becoming particularly significant due to several unfavourable reasons
for Ukraine today. Among them, there is the complicated economic and financial situation in the
country that provokes an increase in the rate of elements' degradation due to a chronic decrease in
funding for maintaining the technical condition of hydraulic structures.

We should admit that the number of physically outdated structures is rapidly growing in the
infrastructure now. Under these conditions, for trouble-free operation and extension of the service
life of structures, new scientific approaches are needed to assess and predict the technical state of
the hydraulic structures' elements at all stages of the life cycle and establish scientifically based
service life. Such algorithms that provide quantitative criteria for the level of reliability in the time
function and, accordingly, the ability to predict the resource of hydraulic structures' elements are
considered in this paper.

The problem and its relevance. For a long time, the problem of the durability of hydraulic
structures was the subject of attention exclusively to academic circles. Forecasting the resource of
the hydraulic structures' elements while designing and operating was not paid due attention in the
theory of structures. The longevity control device has always been primitive and the least studied.
Indeed, there are no levers to control durability in the design apparatus of hydraulic structures.
Their life cycle term is assigned directively, the calculated dependencies do not have variable time,
and the durability problem is entirely in the designer's experience and intuition. On the other hand,
the problem of resource assessment was and is the most significant in socio-economic terms. It is
obvious that under these conditions, the models are aimed at evaluating and predicting the
durability of hydraulic structures with practical implementation and meet the interests of society
and state policy in man-made and economic security.

Analysis of recent research and publications. In scientific works [1-20], applied research
aimed at the theoretical foundation's development to estimate and forecast the life cycle of
construction structures and the practical apparatus to manage their resources is widely used.

In the most general form, the modern formulation of the durability problem is given in the
documents of the Joint Committee on Structural Safety in the work "The typical model™ ("Probabilistic
Model Code,1996") [15-17] and in the monograph by Robert E. Melchers [21], as the probability of
reaching the limit state per time. To do this, enter a time-dependent limit state function:

g(X,t) = R(X!t) - Q(X,t), (1)
where R(X,t) — generalized element resistance; Q(X,t) — generalized loading effect; X — vector of
basic variables; t — time variable.
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The reliability function itself, how is the probability of reaching the limit state over time t it
has the form:

P(t) = Prob[min g(X(t);t) < 0 for 0 <t < ] @)
or in terms of the limit state function:
P(t) = Prob[R(X,t) — Q(X,t) < 0]. 3)

Thus, by dependencies (2) and (3), durability is formulated as a concept functionally related
to reliability. Maximum value t, which satisfies equation (1-3) is the resource of the element.

The theoretical basis of the study, which aims to predict the resource of construction
structures' elements in operation, is Markov's theory of random processes. Markov's theory is a
process whose evolution only depends on a fixed current state over time. As it turned out in the last
15-20 years, the mathematical apparatus of random Markov processes is the most successful for the
mathematical description of construction structures' elements’ degradation process.

The degradation of elements in operation will be considered a flow of failures. In our case, the
flow is considered a hierarchy of failures, which is physically a manifestation of the degradation of
elements under the influence of loads and the environment. The stationary simplest Poisson-type
flow is considered [1, 2].

The research objective is the theoretical foundations to predict the resource of hydraulic
structures.

Materials and methods of the research. A mathematical model of a random process with
continuous time and discrete states, the graph of which is linear, is called the Markov chain [1, 3, 4].
The Markov chain is described using probabilities of states. Let's denote the probability of states k
of a chain pitch in this way:

pi(K)=P(s{); pld =P(sY), @)
where k — a step number, k= 1,2,..., n-1; n—astatus number,n =1, 2, ...

For an arbitrary step of the Markov chain, there are certain probabilities of transition from one
discrete state to another. The probability of transition or the transition probability at step k from the
state S; in the state S; is called the conditional probability that the system S after step k will be in S;
provided that immediately before that it was in state S;.

Let's denote pj; as the probability of switching from state i to state j in one step. In this case, we
will assume that time t; < t;. It is convenient to record the probabilities of transition from state i into state
J in the form of a square matrix. So, for example, when n =5 (n — the number of states) we will have:

p, 1-p 0 0 0
O p 1-p, O 0
p=|0 0 P 1-p; 0 | (5)
o 0 0 p 1-p,
0 0 0 0 1

Matrix P is called a homogen_eous transition matrix (transient prot;abilities). The sum of the
transition probabilities of an arbitrary string is equal to one:

;pij =1, (6)

A vector of initial probabilities is added to the transition matrix, which sets the distribution of
absolute probabilities at the beginning of the process:

Po =[Pu, PP ™
The Markov chain is fully characterized by matrix P with the initial probability vector po.

By the known transition matrix P and the vector of initial probabilities po, the absolute
probabilities of the system's states after the fixed number of transition steps can be defined. So

denoting pi(n) — the absolute probabilities of the system's states after n the expression of the
absolute probability of the system in one step is:
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1 0 0 0 0
O = pOpy+ Py et PRy = 2Py, ®)
i
where p® — the absolute probability of the system moving from state to state in one step; i(0) —
initial probability, a component of the vector Ro; pi; — transient probabilities of the system.
Similarly to (8), by induction, we can show that:
pi” =2 ppf" 9
where p{" — n-step transition probability, determined by recurrent formula [1, 4]:
pl) :Z pj(k‘l) pi i=12 ...nj=12 ..n, (10)
i=1

where pj;; — transition probabilities, matrix elements P; k — step number; n — the number of states.
Formula (10) is convenient to use when at the beginning of the process only one first of the
component of the vector po is known, that is, the initial probability in the first state.

Next, the task is: to find the probabilities of events of the Markov chain py(t), p2(t),...,pn(t), as
functions of time. We emphasize that we are now considering a homogeneous Markov chain, i.e.
one whose transition probabilities are not a function of the step number.

Let's consider a failure chain from n events. How each of the failures is characterized is irrelevant
now. Firstly, the chain must n possible states: Sy, Sy,, S,, and secondly, the states are connected with a
linear graph of the chain, and transitions occur only in one direction — from state i to state i + 1.

The probability of making a step k on which the system will switch from state S; into state Si.q is
characterized by a transition probability density: 4; i+1. Find the function p;(t) — the probability that the
element at a given time t+At is in state of S;. To do this, we will give t small increment At. It is
necessary that within the time At the element did not leave a state S;. The probability of this is found as
the product of the probability ps(t) by the conditional probability that in time At the element will enter
state S,. This probability is 1- A;,At. Applying the probability addition rule, we get:

P1(t+At) — pa(t)( 1-L12At). (11)

Expand the parentheses in this expression, transfer p;(t) to the left side and divide both parts
of the equation by At, we get:

py(t + At) - py(t) _
At = Apph(t). (12)

Next, we will direct At to zero and go to limit:
p(t + At) — p, (1) —

AltiTO AL 1201 (1), (13)
The left side of this expression is the derivative of function py(t):

dp (t

% ==y, Py (1) (14)

Thus, a differential equation is obtained, which must satisfy function p;(t).

The differential equation for determining the function p,(t) is obtained in the same way, with
the difference that at the moment of time t+At we have for state S, two situations:

— at the moment t the element was able to S, and for time At moved to state S;;

— or at the moment t the item was already in S, and over time At not moved to state S;. Given
that, the differential equation for py(t) is recorded as:

dp, (t
P2l ). pa®©+hau(). (15)
Further, the entire system of differential equations is compiled according to one sample:
dp; (t
B PO AP0, =12 0 (16)
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In general, the equations of probability states (16) are written as follows:

dp. (t
p(;t( : = 2 Pg®); 1,j k=12 ... n (a7
k

These are the known Kolmogorov-Chapman equations describing the evolution of a discrete
Markov process with continuous time [3-5]. In matrix form, equations (20) are:

—dp(it' Y _pi.b)-E (18)

where E — state flow intensity vector.
By integrating the system of equations (18), the desired probabilities of states — the time
function are obtained. The initial conditions for integration are as follows:

at t=0 pu(t)=1; p2(t) = ps(t), ..., = pa(t) = 0. (19)
In addition, the normalization condition is used in solving a system of differential equations:
n
> pi(t) =1, (20)
i=1

which is a consequence of the fact that the events of Markov chains are incompatible and form a
complete group. The solution of equations (20) is a matrix of the transition probabilities in the form
of time-dependent variables.

By the known transition matrix elements P, and the initial probabilities vector p, are defined by
absolute probabilities system states in the time function after the fixed number of transition steps:

n
Py (1) = Z Pr-1Pu (1) | (21)
k=11
where | — current status number; n — the number of discrete states in the element's lifecycle; px —
absolute probability of the element in k — the discrete state; pik(t) — transient probability k — of the
discrete state.

Model of the Markov chain based on statistical data of the history of construction
structures in operation. Let's consider a family of random variables {Si}, forming a stochastic
process at the time ti, the system can be located, and form a complete group of events. The number
of system states is finite.

Hypotheses A. A system is defined by a set of finite states and can only be in one of them at
the moment.

B. The initial state of the system and the probability distribution of the initial state are known.

B. The stochastic process here is represented by an integral distribution function P(t) for the
time T,, which proceeds until all n process events happen — Poisson distribution:

n—1 k o—At
P(t) =1-P(T. >1)=1-5 VD&~
k=0 kl

where A is the process parameter failure rate (degradation rate); P; — the probability that the element
will enter the state k during the time t < T,.

I'. The process object is a building. It follows from formula (22) that the states of the system at
any moment t are set by their numbers k=1, 2, ..., n. The transition from state S; into state S, exactly at
k steps can occur in different ways. We consider a special case of the Markov chain in which
movement through the states occurs only in one direction, sequentially from state j to state j + 1:

J<ii<lz..<j1<jn (23)

In other terms, we consider the process graph in which the transition only to the neighbouring
state is allowed, that is, "jumps" are excluded.

To formulate the model, let's use the time-dependent transition matrix P. Each element of this
matrix pjj is a probability that the system will change from state i to state j during a certain period.
Then if the initial state po is known, then the future state of the system can be predicted for any
arbitrary time t.

(22)
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Future state vector p; can be obtained by multiplying the initial state of vector py to transition
matrix P in degree t (the number of years) [3, 4]. The initial state of the system is set by the tape-
matrix po in size [1 X n]:

Po = [P1, P2, ---, Pnl, (24)
where p; — probability of being in state i = 1, 2, ..., n; n — the number of discrete states. The system state
vector for time t is defined as the product of transition matrix P on the initial state vector of the system:

pt=Ro X P!, (25)
where P' — transition matrix P in degree t; Ry — probabilities vector in the initial state.

Next, a certain states vector is introduced d in size [n X 1] — vector of the fixed rating expert
assessments of the structure in safe operation:

d=[ryro....1]" (26)
Here T — the transpose sign; rahg — ratings, real numbers, i=1,2, ..., n.

The technical condition of the structure for any time t is defined by the dependency:

D= poX P' X d, (27)
where D; — rating assessment of the structure at time t — scalar; po — matrix-tape in size [1 X n]
probabilities in the initial state to; P' — transition probability matrix P in degree t in size [n X n].

Presentation of the main research material. Here is a hypothetical illustrative example that
demonstrates the procedure for implementing the Markov model to predict the structure state based
on the known transition probability matrix. For the construction: the number of fixed discrete states
is 5; the initial state vector (the safe operation rating vector):

d=[108642],

— Matrix-tape in size [1 X n] Rq probabilities in the initial state at to:

po=[10000]:

— transition probability matrix:

0,939 0,061 O 0 0
0 0679 0330 O 0
P=| O 0 059 0451 O
0 0 0 0,449 0,551
0 0 0 0 1

Find the construction rating forecast after t = 5 years in operation.
The solution is the technical condition of the structure expressed in a rating assessment on a
scale of 10 — 2 points after 5 years in operation for any time t is defined by the dependency:

(28)

0,730 0,137 0,079 0,039 0,018] [10
0 0,144 0,240 0,266 07374| | 8
D=L 0 0 0 0]x| 0 0 0,050 0,143 0,808|x| 6 |=9,066
0 0 0 0,018 0,982| | 4
0 0 0 0 1 2 |

Formulation of the transition matrix based on statistical data. In the theory of structures,
the statistical approach of formulating the transition matrix, which is based on historical data of the
operating system, is now widespread. Most of them are based on the dependencies of the
probability theory obtained by J. R. R. Tolkien. Bogdanoffim and F. Kozin [12-14], where the
distribution of discrete states for each year W(t) is obtained by multiplying the distribution of the
previous state by transition matrix Po:

W(t) = W(t — 1)xPy,
where W(t —1) — a vector of the previous state distribution.

Let's use the simplest of them — estimating the relative number of bridges in each of the states.
The elements of the transition probability matrix are determined by formula:

(29)
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Pij = Njj / n;j: (30)
where n;; — the number of clicks from state i into state j within a given time period; n; — the total
number of bridges in the state at the beginning of the specified time period.

Let's show the procedure to obtain a transition probabilities matrix using the example of
statistical data obtained from the road bridge operation system. Let's look at the historical data of
reinforced concrete bridges of all types in operation. The state distribution of all types of bridges is
shown in Table 1 below.

Table 1- Distribution of road bridges by operational condition

State 1 2 3 4 5 Total
In absolute terms, units. 112 758 4288 1751 122 7031
In percentage, % 1.6 10.8 61.0 24.9 1.7 100

From Table 1 we obtain a super diagonal elements' vector of the transition probability matrix

P: pii=1,2,3,...4j=i+L1

p;; = [0.016 0.108 0.610 0.249]". (31)
The corresponding transition probability matrix will have value:
0,984 0,016 0 0 0
0 0,892 0,108 0 0
P=| 0 0 0,390 0,610 0
0 0 0 0,751 0,249
32
0o 0 0 0 1 | (32
The transition probability matrix of one year in operation is calculated as P
0,968 0,030 0,002 0 0 |
0 0,79 0,138 0,066 0
P?=| 0 0 0,152 0,696 0,152
0 0 0 0,564 0,436 . (32a)
. 0 0 0 0 1
The transient probabilities matrix predicted after 5 years in operation will have value:
0,923 0,062 0,008 0,006 0,001
0 0,565 0,120 0,220 0,096
P°=| 0 0 0,009 0,388 0,603
0 0 0 0,239 0,761
: (320)
0 0 0 0 1 |

Let's introduce a 100-poinf rating system. (An important note: the technical condition
criterion in this model is a rating assessment of the technical condition of the structure), Table 2.

Table 2 — Rating assessment of the structure in operation

State in operation Evaluation scale, points
State 1. Workable 100 - 79
State 2. Limited workable 80 -59
State 3. Workable 60 - 39
State 4. Limited workable 40-19
State 5. Unworkable <20
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Algorithm forecasting the technical condition of structures. The algorithm for
implementing the Markov chain model for predicting the technical condition of the structure as a
whole is given in Table 3.

Table 3 — Algorithm for predicting the technical condition of hydraulic structures

Step Operation

Calculating super diagonal elements of the transition probability matrix with using
formula (4.30): pi; = nj; / n; where n;; — the number of clicks from state i into state j within
a given time period; n; — the total quantity of bridges in the state and at the beginning of
the specified time period. Diagonal elements are calculated as an addition to 1.

2 | The initial state of the system is set by the tape-matrix p, by form (27).

The system state vector is calculated for time t as a product of the transition matrix P in

3 degree t on the initial state vector of the system by formula (26) p; = po X P".
4 A defined states vector is introduced d in size [n X 1] (a safe operation rating vector) by
formula (27)d =[ry, ra, ..., 1]
Technical condition of the structure for any time t is defined by dependency (28) D: = po
5 X P' X d, where Dy — rating assessment of the structure for time t — scalar; po — matrix-

tape in size [1 X n] probabilities in the initial state to; P'— transition probabilities matrix
P in degree t in size [n X n].

The Markov phenomenological model of damage accumulation. The Markov models of
random processes described above are universal. The random process described by the model is
invariant to the type of modeling object, to the material, and to the operating conditions. As for the
failure intensity parameter, it is the subject of a special study in the phenomenological model of
damage accumulation, its definition in our model is given below.

The task is to develop a phenomenological probabilistic model of the degradation of a
structural element in operation. The element degradation model aims to establish the law of
reliability in the time function and, thereby, give an apparatus for predicting its technical condition.
The model developed by us has two components: the phenomenological classification tables of
discrete states and the reliability function. The following four hypothetical propositions form the
theoretical basis of the model.

A. The numerical reliability parameter is taken as a criterion for the technical condition of an element.

B. The element's life cycle is divided into 5 discrete states. Each of the states is described by a
selection of gquantitative and non-formalized qualitative degradation indicators that characterize the
hierarchy of the element failures.

C. The process of element degradation during the life cycle is described by a discrete model
of a random Markov process with continuous time.

D. The transition from one discrete state to another is described as a Poisson process with
discrete states and continuous time by formula (25).

Discrete states of the element. The system evolution will be described by the Markov
discrete process with continuous time [5, 6]. Let's formulate the Markov process for models in
which wandering through discrete states is carried out only in one direction: from the state with a
smaller number to the state with a larger number. At the same time, the transition is possible not
only to the neighbouring state but also by "jumping™ through neighboring states. In terms of the
discrete Markov process, the problem is reduced to the search for unconditional probabilities of
finding a system S at an arbitrary step k in state S;.

The system of failures, which is a consequence of the wear and tear of the structure element, will
be considered a stream of random discrete Markov chain events. The process with "qualitative states"
is considered. The role of a random variable is played by the "random discrete state of the system".

During the life cycle of an element in operation let's introduce 5 discrete states that form a
tuple S = {S;, S», ..., Ss}. Discrete states are described by a selection of qualitative and quantitative
indicators of no formalized degradation indicators that characterize the hierarchy of element failures
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[7, 13]. A generalized description of states that represent damage accumulation as a hierarchy of
gradual element failures is given in Table 4.

Table 4 — General characteristics of states

State State characteristics
S; The element meets all the project requirements.
S The element partially does not meet the requirements of the project, but the
2 requirements of either the first or second groups of limit states are not violated.
The element partially does not meet the project requirements, but the requirements of
S the first group of limit states are not violated. A partial violation of the requirements
3 of the second group of limit states is possible, if this does not limit the normal
functioning of the structure.
S The element has signs of violations of the requirements of the first group of limit
4 states and serious violations of the requirements of the second group of limit states.
S The element has serious violations of the requirements of the first group of limit states
> |and it turns out that it is impossible to prevent them and stop its operation.

Phenomenological description of the process of element degradation of a hydraulic
structure. The process of element degradation during the life cycle is described by discrete state
classification tables. These tables, depending on the type of material and the design purpose of the
element, are compiled on the basis of the experience of expert scientists [5, 7] on supervision,
diagnostics, inspection and the testing of structures. In Table 5 an example of describing discrete
states of construction structure elements is given.

Table 5 — Operational conditions of pre-stressed reinforced concrete elements

Wear

State Defect or violation
level, %

Single chipping of small rebar sizes in concrete

Single sinks in the concrete of small sizes without exposing the reinforcement
Single hair cracks without rust marks with opening up to 0.2 mm 0-1
Hydrogen index ph=11

Local temperature-shrinkage cracks with opening up to 0.1-0.2 mm
Local chipping of concrete without exposing rebar

2 | Local sinks without exposing fittings 2-4
Local smudges without exposing the reinforcement
Hydrogen index ph=10

Numerical chips in the stretched area of the structure
Numerous sinks in stretched concrete

3 | Traces of leaching on the element surface 5-14
Hydrogen index ph=9

Single opening of force cracks in inclined sections or along the reinforcement

Cracks in the stretched concrete with an opening of more than 0.2 mm
Inclined force cracks in support zones

4 | Temperature cracks in support zones 15-33
Traces of concrete leaching on the element surface
Hydrogen index ph=8

Longitudinal cracks in compressed concrete along pre-stressed reinforcement
with peeling of the concrete protective layer

5 | Traces of rust near cracks >34
Uneven deflection of bent elements
Hydrogen index ph=7
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Reliability function. The reliability function describes the process of element degradation
during the life cycle, that is, it establishes a relationship between reliability and the service life of
the element. It is postulated that degradation speed is described by one parameter A— an indicator
of the failure rate. This indicator is assumed constant, independent of time A = A (t).

For the reliability function according to hypothesis D, the Poisson distribution law is adopted.
When k = 5 the function has the form:

P(t) =1-0,008333 (A(t)t e O, (33)
where P; — the probability that the element will enter state k within the time t < Ty .

Thus, at a given failure rate A, dependence (33) establishes a relationship between the
reliability of the element P; in i- state and time t, passed from the start of the operation to state
i=2,...5.

Transition probabilities matrix. Model A. The model is represented by the process, whose
graph is shown in Fig. 1. This is a discrete process with continuous time. The system can
sequentially move from one neighbouring state to another with a larger number, or stay in any of
them. State 5 is absorbing. This means that the system does not have the exit of state 5.

BRE8Y

0,

Fig. 1. Model A. Process graph

Let's define matrix P(i, t) and matrix E by the Kolmogorov—-Chapman equations (17). To
simplify writing matrix elements, their shape will be changed slightly. In the future, the argument t
with the transition probability pi(t), i = 1, 2, 3, 4 and transition intensitiesA(t) and argument (i, t) at
matrix P(i, t) will not be written.

In model A, let's set the transition intensities independent of the step and time:

?“ij ®)=r@t)="n. (34)
Matrix E will look like this:
E"=[xran], (35)
and equation (20) in this case is simplified and written as follows:
dP
e AP (36)
According to the process graph of model A, the system of equations (36) will be:
-pp O
d—P:K- -P P ’ 37)
dt —Ps P
—Ps P

Integrating the system of equations (37) under conditions (21, 22) gives the values of the
transition matrix elements:

[0,9900 0,0100 0 0 0
0 09802 00198 0 0
P,=| 0 0 09704 00296 0 | (38)
0 0 0 09608 00392
0 0 0 0 1|
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The initial unconditional probability is accepted px = 0.9998 (p=3.8. Here P is the safety
characteristic, and the numerical parameter is related to reliability by the relation: Pt = ®-f), where
@ is the standard function of the normal distribution), which corresponds to the minimum standard
value of the design reliability in state 1. By formula (21), an unconditional probabilities vector is
obtained in state j:

P;=[0,9998 09899 09703 09416 09047 (39)

According to the known unconditional probabilities vector of the system in state j = 1, 2,..., 5
degradation curves are defined, i.e. a family of implementations of a stochastic process, each of
which, at a given value of the failure intensity parameter, A gives transition time forecast from state
j into state j + 1 [8, 9].

Model B. Model A describes the stochastic process of gradual accumulation of damage. In
reality, the ageing process of a structure element consists not only of gradual failures but also of
sudden ones. This is exactly what model B is. In it the process of damage accumulation contains
sudden "jumps" over one state, as shown in the process graph Fig. 2.

It is also a discrete process with continuous time, with evenly distributed time intervals
between the states. The system can remain in any of them, sequentially move from one
neighbouring state S; to another one with a larger number S;.1, or jump over a nearby state S;+; to
the next one S;.,. State 5 — absorbing.

}\2 )\2

Fig. 2. Model B. Process graph

According to the process graph of model B (fig. 2) the system of equations (17) will be:
- ®Pp, 0 0 |
P _|-¢p, AP O

dt —op; 4P, AP

__21 P4 /11 P; /12 pz_
here A4 transition intensity from state S; in state Si+1; Ao — transition intensity from state S; in state
Siva; =M+ 1p.

The transition intensity to the neighbouring state is assumed Ajand the "jump" transition
intensity Ao =0,05- 4, . The numerical solution of the system of differential equations (40) by the

Runge-Kutt method gives the values of conditional transition probabilities from which the transition
matrix is formed:

(40)

10,9851 0,0049 0,0100 0 0
0 0,9704 0,0097 0,0199 0
Pob=| O 0 0,9560 0,044 0 | (41)
0 0 0 0,9418 0,0582
0 0 0 0 1
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The initial unconditional probability is assumed, as for model A px = 0.9998 (B = 3.8) and by
the known values of conditional transition probabilities Py and by formula (24) an unconditional
probabilities vector is obtained in state j of a stochastic system of model type B:

P, =[0,9998 0,9849 09558 0,9138 0,8605 . (42)

As expected, the probability in states 2-5 is lower compared to model A, which can be
interpreted as an implementation in the process of sudden failures.

Determining the failure rate parameter. Determination of the failure intensity parameter is
the dominant feature of the Markov phenomenological model of accumulation of damage to
construction structure elements. As seen from dependency (36), the only parameter of lifecycle
management is the failure rate 4. In the model under consideration, the parameterA is determined by
solving equation (33) under the initial conditions for an individual element obtained from the survey
results. The procedure for determining the parameterA was first proposed in 1999. It is in a specific
definition of the initial conditions for equation (36) with respect to an unknown parameter A:

— reliability Py; is related to a specific task i-th technical condition. This value becomes
known as soon as the discrete state of the element is classified according to the survey data, and t; —
the time elapsed from the start of operation of the element to state i. Time t; is known from the
technical documentation of the bridge. A graphical interpretation of the parameter determination
procedure is given in Fig. 3.

It is obvious that the proposed method for determining the parameter value A of a structural
element that controls the "nowadays", that is, with i-th discrete state, a life cycle model, provides
complete information about the load history in "the past”, and not only that. The failure rate
parameter defined by this procedureA contains a lot of other information about the operation of the
facility, related to the characteristics of the environment, the level of loading effects, the quality of
construction, design features, etc.

F I
0,9984 | | 295
State 2
0,9925 243
P(t) |
State 3
0,9798 |- A A N A N 2,05
|
|
|
. State 4
0,9584 \ N\ 1,74
10 20 ¢ 40 60 80 100
1
7

Fig. 3. Graphical interpretation of the failure intensity parameter definition 4
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Predicting the remaining resource of the element. The forecast of the remaining resource is
determined, again, by solving the degradation equation (36). The initial data for solving the
equation is now the reliability of element P;s — the limit value of reliability in the 5th operational
state and the parameter of the element failure rate determined in the previous step from equation
(36) A.

The time determined under these initial conditions is Ts — that is, the time that passes from the
current state of the element to the fifth operational state and is the remaining resource.

An example of the model implementation is the new regulatory documents for the system of
road bridges' operation in Ukraine [5, 6].

Analysis of model. A. As seen from the above formulation, the model is theoretically strictly
justified. However, the fact that the model is phenomenological requires a deep insight into the
physical essence of the described process, because it is necessary not only to adequately describe
each of the discrete states but also to establish changes in parameters correctly within one discrete
state, while the simulated process is continuous.

B. The decision on the number of discrete states representing the life cycle of an element is
quite subjective. It is clear that the more discrete states there are, the more accurately the continuous
process of damage accumulation is described. On the other hand, describing a large number of
discrete states requires a significant expansion of the database of reliable full-scale data. The model
developer decides where the reasonable satisfaction of these conflicting requirements is.

B. An important theoretical side of the model is the graph of the element degradation process.
The graph of the model, which depends on the number of discrete states and the connections
between them, will always be the subject of special attention on the part of the researcher, and will
always reflect his subjective idea of the essence and regularities of the process.

I'. Another fundamentally important aspect of the model is the question of the developer's
definition of the failure intensity function A(t), which is generally a random function of time.
However, there is no standard procedure here, and the researcher has to look for special techniques
for determining this basic parameter of model control.

The economic effect of forecasting the resource of hydraulic structures. Assessment of
the possible economic effect of forecasting the resource of construction structures is performed
according to criterion Z,,, which takes into account the operating costs of managing the object's
state. The minimum goal function is obtained with using the penalty method:

4 Clt(Slt) ﬂmin _ﬂi,t _ -
;;(Blm (1+ ) |:1+maX( ﬂmin ’O):| = (43)

where C;; — operating expenses for managing the condition of the construction structure i per year t,
UAH; S; — operational condition; Bpyin — minimum allowable value of the safety characteristic; B —
a value of the safety characteristic of the i-th construction structure per year t; r — discount rate
adjusted for the inflation rate, Bl;; — importance factor (priority) i-th element at the beginning of the
year t.

The time-dependent priority of a construction structure is determined by formula:
Ng

BI, () = Zw f,k(t)+ZW o, (44)

where Ng¢ — the number of factors of mfluence that depend on tlme t, in years; Ng — the number of
factors of influence that do not depend on time; w; — normalized impact factor i-th factor,
Ne
(established by experts using the Saati method, Zwi =1); f; — dimensionless value of importance i-
i=1
the structure element determined by an expert.
Thus, criterion Z,, — is the number of operating expenses adjusted for the penalty ratio. If the
safety characteristic B falls below the specified minimum allowable value of the function value Z,,
will increase, which serves as a barrier to an unjustified decrease in the permissible value of Bmin
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security features. Through fines, the achieved condition of the facility is taken into account, and
better condition means minimizing operating costs and maximizing external positive effects.

The minimum allowable level Bmin IS Set based on an economic justification, but it cannot be
less than the maximum permissible limit for the safety requirements for the operation of a
construction structure element, for example, less than 1.74.

Conclusions. Assessment of the possible economic effect of forecasting the resource of
hydraulic structures is performed according to Z criterion,,. It represents the number of operating
expenses adjusted for the penalty ratio. When the safety characteristic S falls below the specified
minimum allowable value, the value of the function Z,, will increase, which serves as a barrier for
unjustified reduction of the allowable value Bmin Of the safety characteristic. Through fines, the
achieved condition of the facility is taken into account, and better condition means minimizing
operating costs and maximizing external positive effects. The minimum allowable level Sni is set
based on the economic justification, but it cannot be less than the maximum permissible limit for
the safety requirements for the operation of hydraulic structures.

The reliability function describes the process of degradation of hydraulic structures during the
life cycle, that is, the relationship between reliability and the operating time of the element is
established. It is postulated that the degradation rate is described by one parameter — an indicator of the
failure rate. This indicator is assumed constant, independent of time.
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AHoTauisg. BcTtaHoBneHo, 1m0 B TepMiHax IUCKPETHOIO MAapKOBCHKOTO MpOLECY 3ajgaya
3BOAMTHCS JI0 MONIYKY 0€3yMOBHUX MMOBIpHOCTEH nepe0yBaHHS CHCTEMH S Ha JOBLILHOMY Kpolli k B
cTaHi S, TOOTO OTpUMaHHs MaTpUlll MepexiJHUX HMoBipHOCTe. B TakoMy (opmymroBaHHI MOzENb
CIY’KUTb JJIS: OLIHKM TE€XHIYHOTO CTaHy €JeMEHTAa; OLIHKU PIBHS O€3MeKH eKCIUTyaTallii elIeMEeHTIB
KOHCTPYKIIi; paHXMpPYBaHHS €JEMEHTIB 3a IMOTPeOOI PEMOHTIB, PEKOHCTPYKLIi abo 3aMiHH; B
CTpaTeriuHOMy IIJIaHyBaHHI BHJATKIB Ha PEMOHT a00 PpEKOHCTPYKII0 3a YMOB OOMEXKEHOIro
(iHaHCYBaHHS Ta MIPOTHO3Y 3AIUIIKOBOIO PECYPCY €IEMEHTIB.

BcranoBieHo, 1o TeopeTHUYHUM 0a3ucoM JOCHIIKEHHS, 10 Ma€ 3a METY IPOrHO3yBaHHS
pecypcy TiIpOTEXHIYHMX CHOpYJ y Tpoleci eKcIulyaralii, € MapKOBChbKa TeOpis BHUIAIKOBUX
mporieciB. Jlis MareMaTHYHOTO OMHMCY TPOIECY Jerpajarii eJIeMEHTIB HaWOUIbII BIAIUM €
MaTeMaTU4HUH arnapar BUMaJKOBUX MapKOBCHKHUX MPOLIECIB.

BusnauenHs  mapameTpa  IHTEHCHBHOCTI  BIIMOB €  JOMIHAHTOKO  MAapKOBCBHKOIi
(eHOMEHOIOT1YHOI MOJeNi HAKOMUYEHHS TMOIIKO/KEHb €JIEMEHTIB TiAPOTEXHIYHUX CIOPY/I.
€IUHUM TapaMeTpoM YIPaBIiHHS KUTTEBUM IMKJIOM € IHTEHCUBHICTH BiAMOB A. B monemni, mo
PO3IIISIAEThCS, MapaMeTp A BH3HAYAE€THCS 3a IMOYATKOBUX YMOB JJIsI OKPEMOIO eJEMEHTY,
OTPUMaHUX 32 Pe3yJbTaTaMU OOCTEKEHHS.
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3a paxyHOK TOro, IO MapaMeTp A BHU3HAYAETHCA [UISI OKPEMOTO €JeMEHTa 1 Mae
YTOUHIOBATUCSA KOXKHOTO pa3y MICIsl Y4eproBOro OOCTEKEHHS, TOUYHICTh MOJCHI ITiABUIIUTHCS.
Monenb, MO MPOTOHYETHCS, € THTErPAIbHOI. BOHA HE MICTHTH SIBHOTO TEOPETUYHOTO amapary
YyHHOTO JI0 MaTepialy eJIeMEHTY, HOTO CTAaTMYHOI CXEMH, TEXHOJIOTIl CIIOPYIKCHHS, €KOJIOTTYHIX
YMOB Ta TaKoro iHmioro. 3 iHmoro OoKy, Bci Ha3BaHi (akTopH i1 Oararo iHIIMX, APYTOPSIHUX,
OepyThCs 70 yBarm B MOJENI B MOMEHT, KOJHM 3a JIONMOMOror Kiacu(ikamiiHuX Tabaulb, IO
MICTSATh (Di3MYHI 1 MEXaHIYHI O3HAKH JIerpajiallii, BA3SHAYA€ThCS CTaH eIEMEHTA.

B Teopii criopy mommpeHuM € CTaTUCTUYHHUH MiX11 GOpMyIIFOBaHHS MaTPHIll MIEPEXO/IiB, B
OCHOBI SIKOTO JIe)KaTh ICTOPUYHI JaHI CUCTEMH eKCIUTyaTtalii cnopyau. BBakaeTbes, M0 MaTpHUILL
nepexo/iB po30yaoBaHa 3a JAaHUMHU CHCTEMH EKCIUTyaTallli € OUIbII peaicTUYHOI0 OCHOBOIO JIJIS
NPOTHO3Y TIpoleciB ngerpaganii cnopya. [IpakTHUHOMY 3acTOCYBAaHHIO MATpHIl IEPEXOIiB
pO30yI0BaHOI 32 CTATUCTUYHHUMHU JAHUMHU MPUCBAYEHA BEJIUKA KUTBKICTh 3apYO1KHUX JTOCIIIKECHb
B SKHX PO3TJISAAIOTHCS OCOOIMBOCTI MATPHIb IMEPEXOJiB IMOB’S3aHI 3 CHCTEMOKO CKCIUTyaTallii
MOCTIB pi3HUX KpaiH. B Takiif mOCTaHOBIII KOKEH €JIEMEHT MaTpPHII MMepexigHuX iMoBipHOCTEH P €
HMOBIpHICTH TOTO, III0 CUCTEMa siKa OyJia B CTaHi 1 mepeiiie B cTaH j 3a OJUH KPOK (TOOTO 3a 0JuH
pik). Ilpu 11bOMy BBa)Ka€ThCS IO BIJCYTHI CKCIUTyaTamiiiHi BTpY4YaHHS, TOMY MijjiaroHaiabHI
€JIEMEHTH € HyJIbOBUMHU. SIK 1 paHille cyma eJIeMEHTIB OJJHOI CTPOKM JOpiBHIOE 1 i eneMeHT pjj = 1
TOMY SIK CTaH | € MOTJIMHAIOYHM.

Jliis anroputMy peaizaliii MOaesli MapKOBCHKOTO JIAHIIOTA IS POTHO3YBAHHS TEXHIYHOTO
CTaHy TIAPOTEXHIYHMX CHOPYJ B LUIOMY BHUXIJTHUMHU JaHUMH €: CTaTUCTUYHI JIaHi PO3MOJILLY
CHOPY[ MO CTaHaM Ha Yac MPOTHO3Y, PEHTHHrOBa OIIHKA CIOPYIU OOYUCIICHA €KCIIEPTOM 3TiJTHO
IIKAJIM Ta 4ac MPOTHO3Y B POKaX.

BcranoBieHno, 1mo JaerpanamiidiHi BIACTUBOCTI KOHCTPYKINM CIOPYI OIMCYIOTHCS JIBOMA
napamMeTpamMu: KpuUTepieM Jerpajailii Ta iHTeHCHUBHICTIO BiqMoB. Kputepiem nerpanaiii mMoxe OyTH
NPUHHATHIA OyIb-IKUi (aKTOp HaANpyKEeHO-1e(OPMOBAHOTO CTAaHY: HAAIHHICT, BHYTPIIIHI 3yCHILIS,
nedopmarii. Kpurepiem aerpaaariii Mo)ke BUCTYNAaTH [OBUIbHA pEHTHHTOBa oOlLliHKA. B Hamomy
BUIIAJIKY 32 KPUTEPId JAerpajanii NpruiiMaeThCs HAIIHICTD €IEMEHTa, SIK HalHOUTbII 3araibHui (hakTop
HaIpY>XeHO-1e)OPMOBAHOTO CTaHYy.

KirouoBi cjioBa: TiIpoTeXHIYHI CHOPYIH, JACTpajaalis KOHCTPYKIIH cropya, MapKoBcbka
MOJIeTIb, TEPMIH CITYKOH.
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