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Abstract. It is established that in terms of the discrete Markov process, the problem is reduced to 

the search for unconditional probabilities of the system S at an arbitrary step k in state Si, that is, 

obtaining a transition probabilities matrix. In this formulation, the model is used for assessing the 

technical condition of the element; assessing the level of safety of operation of structural elements; 

ranking elements according to the need for repairs, reconstruction or replacement; in strategic planning 

of repair or reconstruction costs in conditions of limited funding and forecasting the remaining 

resource of elements. 

It is established that the theoretical basis of the study, which aims to predict the resource of 

hydraulic structures in operation, is the Markov theory of random processes. For a mathematical 

description of the process of element degradation, the most successful is the mathematical apparatus of 

the Markov random processes. 

Determination of the failure intensity parameter is the dominant feature of the Markov 

phenomenological model of damage accumulation to hydraulic structures' elements. The only 

parameter of lifecycle management is the failure rate . In the model under consideration, the 

parameter is determined based on the initial conditions for an individual element obtained from the 

survey results. 

Because the parameter λ is determined for an individual element and must be specified each time 

after the next survey, the accuracy of the model will increase. The proposed model is integral. It does 

not contain an explicit theoretical apparatus for a material-sensitive element, its static scheme, 

construction technology, environmental conditions, etc. On the other hand, all these factors and many 

other secondary ones are taken into account in the model at the moment the state of the element is 

determined using classification tables containing physical and mechanical signs of degradation. 

In the theory of structures, the statistical approach to formulating the transition matrix is 

widespread and is based on historical data from the structure operation system. It is believed that 

the transition matrix based on the data of the operating system is a more realistic basis for 

predicting the processes of structures degradation. A large number of foreign studies are devoted to 

the practical application of the transition matrix based on statistical data, which consider the 

features of transition matrices related to the bridge operation system in different countries. In this 

formulation, each element of the transition probability matrix P is the probability that the system in 

the state will move to state j in one step (i.e., in one year). At the same time, it is considered that 

there are no operational interventions, so the sub-diagonal elements are zero. As before, the sum of 

elements of the same line is 1 and the element pjj = 1 because state j is absorbing. 
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For the implementation algorithm of the Markov chain model for forecasting the technical 

condition of hydraulic structures in general, the initial data are: statistical data of the distribution of 

structures by the state at the time of the forecast, the rating assessment of the structure is calculated 

by an expert according to the scale and the forecast time in years. 

It is established that the degradation properties of structural designs are described by two 

parameters: the degradation criterion and the failure rate. Any factor of the stress-strain state can be 

taken as a degradation criterion: reliability, internal forces, or deformations. The degradation criterion 

can be an arbitrary rating assessment. In our case, the reliability of the element is taken as the 

degradation criterion, as the most general factor of the stress-strain state. 

Keywords: hydraulic structures, structural degradation of structures, Markov model, service life. 

Introduction. The classical a priori formulation of the life cycle of a hydraulic structure here 

receives a rigorous scientific justification regarding resource – the structures are associated with 

universal models of describing the phenomenological degradation processes of hydraulic structures' 

elements by random functions of the Markov type. The central scientific idea of this approach is a 

new paradigm of the theory of structures is to establish the relationship between the equations of 

boundary States and the variable of operating time.  

The problem of estimating and forecasting the resource, as a category of durability, is relevant 

not only for the latest hydrotechnical structures but also has an independent extraordinary weight as 

a factor of the state strategy for managing and preventing man-made risks. All countries face this 

problem, but the problem is becoming particularly significant due to several unfavourable reasons 

for Ukraine today. Among them, there is the complicated economic and financial situation in the 

country that provokes an increase in the rate of elements' degradation due to a chronic decrease in 

funding for maintaining the technical condition of hydraulic structures.  

We should admit that the number of physically outdated structures is rapidly growing in the 

infrastructure now. Under these conditions, for trouble-free operation and extension of the service 

life of structures, new scientific approaches are needed to assess and predict the technical state of 

the hydraulic structures' elements at all stages of the life cycle and establish scientifically based 

service life. Such algorithms that provide quantitative criteria for the level of reliability in the time 

function and, accordingly, the ability to predict the resource of hydraulic structures' elements are 

considered in this paper.  

The problem and its relevance. For a long time, the problem of the durability of hydraulic 

structures was the subject of attention exclusively to academic circles. Forecasting the resource of 

the hydraulic structures' elements while designing and operating was not paid due attention in the 

theory of structures. The longevity control device has always been primitive and the least studied. 

Indeed, there are no levers to control durability in the design apparatus of hydraulic structures. 

Their life cycle term is assigned directively, the calculated dependencies do not have variable time, 

and the durability problem is entirely in the designer's experience and intuition. On the other hand, 

the problem of resource assessment was and is the most significant in socio-economic terms. It is 

obvious that under these conditions, the models are aimed at evaluating and predicting the 

durability of hydraulic structures with practical implementation and meet the interests of society 

and state policy in man-made and economic security. 

Analysis of recent research and publications. In scientific works [1–20], applied research 

aimed at the theoretical foundation's development to estimate and forecast the life cycle of 

construction structures and the practical apparatus to manage their resources is widely used.  

In the most general form, the modern formulation of the durability problem is given in the 

documents of the Joint Committee on Structural Safety in the work "The typical model" ("Probabilistic 

Model Code,1996") [15-17] and in the monograph by Robert E. Melchers [21], as the probability of 

reaching the limit state per time. To do this, enter a time-dependent limit state function: 

g(X,t) = R(X,t) – Q(X,t),        (1) 

where R(X,t) – generalized element resistance; Q(X,t) – generalized loading effect; X – vector of 

basic variables; t – time variable. 
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The reliability function itself, how is the probability of reaching the limit state over time t it 

has the form: 

P(t) = Prob[min g(X(τ);τ) < 0 for 0 <τ < t]   (2) 

or in terms of the limit state function: 

P(t) = Prob[R(X,t) – Q(X,t) < 0].    (3) 
Thus, by dependencies (2) and (3), durability is formulated as a concept functionally related 

to reliability. Maximum value t, which satisfies equation (1-3) is the resource of the element. 
The theoretical basis of the study, which aims to predict the resource of construction 

structures' elements in operation, is Markov's theory of random processes. Markov's theory is a 
process whose evolution only depends on a fixed current state over time. As it turned out in the last 
15-20 years, the mathematical apparatus of random Markov processes is the most successful for the 
mathematical description of construction structures' elements' degradation process. 

The degradation of elements in operation will be considered a flow of failures. In our case, the 
flow is considered a hierarchy of failures, which is physically a manifestation of the degradation of 
elements under the influence of loads and the environment. The stationary simplest Poisson-type 
flow is considered [1, 2]. 

The research objective is the theoretical foundations to predict the resource of hydraulic 
structures. 

Materials and methods of the research. A mathematical model of a random process with 
continuous time and discrete states, the graph of which is linear, is called the Markov chain [1, 3, 4]. 
The Markov chain is described using probabilities of states. Let's denote the probability of states k 
of a chain pitch in this way: 

)()( )(k
ii SPkp  ; )( )(

1
)(
1

k
i

k
i SPp   ,       (4) 

where k – a step number, k = 1,2,…, n-1;  n – a status number, n = 1, 2, … 
For an arbitrary step of the Markov chain, there are certain probabilities of transition from one 

discrete state to another. The probability of transition or the transition probability at step k from the 
state Si in the state Sj is called the conditional probability that the system S after step k will be in Sj 
provided that immediately before that it was in state Si.  

Let's denote pij as the probability of switching from state i to state j in one step. In this case, we 
will assume that time ti < tj. It is convenient to record the probabilities of transition from state i into state 
j in the form of a square matrix. So, for example, when n = 5 (n – the number of states) we will have: 

P = 


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Matrix P is called a homogeneous transition matrix (transient probabilities). The sum of the 
transition probabilities of an arbitrary string is equal to one: 

1
1

ij 


n

j

p .        (6) 

A vector of initial probabilities is added to the transition matrix, which sets the distribution of 
absolute probabilities at the beginning of the process: 

 Tnppp ,...,, ,210p .     (7) 

The Markov chain is fully characterized by matrix P with the initial probability vector p0. 
By the known transition matrix P and the vector of initial probabilities p0, the absolute 

probabilities of the system's states after the fixed number of transition steps can be defined. So 

denoting 
)(n

ip  – the absolute probabilities of the system's states after n the expression of the 

absolute probability of the system in one step is: 
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where 
)1(

ip  – the absolute probability of the system moving from state to state in one step; 
)0(

ip  – 

initial probability, a component of the vector R0; pij – transient probabilities of the system. 

Similarly to (8), by induction, we can show that: 
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where )(n
ijp  – n-step transition probability, determined by recurrent formula [1, 4]: 
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i  i = 1, 2, …, n;  j = 1, 2, …, n, (10) 

where pij – transition probabilities, matrix elements P; k – step number; n – the number of states. 

Formula (10) is convenient to use when at the beginning of the process only one first of the 

component of the vector p0 is known, that is, the initial probability in the first state. 

Next, the task is: to find the probabilities of events of the Markov chain p1(t), p2(t),…,pn(t), as 

functions of time. We emphasize that we are now considering a homogeneous Markov chain, i.e. 

one whose transition probabilities are not a function of the step number. 

Let's consider a failure chain from n events. How each of the failures is characterized is irrelevant 

now. Firstly, the chain must n possible states: S1, S2,, Sn, and secondly, the states are connected with a 

linear graph of the chain, and transitions occur only in one direction – from state i to state i + 1. 

The probability of making a step k on which the system will switch from state Si into state Si+1  is 

characterized by a transition probability density: i, i+1. Find the function p1(t) – the probability that the 

element at a given time t+t is in state of S1. To do this, we will give t small increment t. It is 

necessary that within the time t the element did not leave a state S1. The probability of this is found as 

the product of the probability p1(t) by the conditional probability that in time t the element will enter 

state S2. This probability is 1– 12t. Applying the probability addition rule, we get: 

p1(t+t) – p1(t)( 1-12t).    (11) 

Expand the parentheses in this expression, transfer p1(t) to the left side and divide both parts 

of the equation by t, we get: 
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Next, we will direct t to zero and go to limit: 
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The left side of this expression is the derivative of function p1(t): 

)(
)(

112
1 tp
dt

tdp
 (14) 

Thus, a differential equation is obtained, which must satisfy function p1(t). 

The differential equation for determining the function p2(t) is obtained in the same way, with 

the difference that at the moment of time t+t  we have for state S2 two situations: 

– at the moment t the element was able to S1, and for time t moved to state S2;

– or at the moment t the item was already in S2 and over time t not moved to state S3. Given

that, the differential equation for p2(t) is recorded as: 

)()(
)(

112223
2 tptp
dt

tdp
 . (15) 

Further, the entire system of differential equations is compiled according to one sample: 
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iiiiii

i
   i = 1, 2, …, n. (16) 
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In general, the equations of probability states (16) are written as follows: 
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)(
∑ tp

dt
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kjik

ij
 ;  i, j, k = 1, 2, …, n.   (17) 

These are the known Kolmogorov-Chapman equations describing the evolution of a discrete 

Markov process with continuous time [3-5]. In matrix form, equations (20) are: 

                                                           EP
P

 ),(
),(

ti
dt

tid
,     (18) 

where E – state flow intensity vector. 

By integrating the system of equations (18), the desired probabilities of states – the time 

function are obtained. The initial conditions for integration are as follows: 

                                   at  t = 0  p1(t)=1;  p2(t) = p3(t), …, = pn(t) = 0.                          (19) 

In addition, the normalization condition is used in solving a system of differential equations: 

,1)(
1





n

i
i tp      (20) 

which is a consequence of the fact that the events of Markov chains are incompatible and form a 

complete group. The solution of equations (20) is a matrix of the transition probabilities in the form 

of time-dependent variables. 

By the known transition matrix elements P, and the initial probabilities vector p0 are defined by 

absolute probabilities system states in the time function after the fixed number of transition steps: 


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n
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ikkk tpptp
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1 )()( ,    (21) 

where l – current status number; n – the number of discrete states in the element's lifecycle; pk – 

absolute probability of the element in k – the discrete state; pik(t) – transient probability k – of the 

discrete state. 

Model of the Markov chain based on statistical data of the history of construction 

structures in operation. Let's consider a family of random variables {Stk}, forming a stochastic 

process at the time tk, the system can be located, and form a complete group of events. The number 

of system states is finite. 

Hypotheses A. A system is defined by a set of finite states and can only be in one of them at 

the moment. 

Б. The initial state of the system and the probability distribution of the initial state are known. 

В. The stochastic process here is represented by an integral distribution function P(t) for the 

time Tn, which proceeds until all n process events happen – Poisson distribution: 

,
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where λ is the process parameter failure rate (degradation rate); Pt – the probability that the element 

will enter the state k during the time t < Tk. 

Г. The process object is a building. It follows from formula (22) that the states of the system at 

any moment t are set by their numbers k=1, 2, …, n. The transition from state Sj into state Sn exactly at 

k steps can occur in different ways. We consider a special case of the Markov chain in which 

movement through the states occurs only in one direction, sequentially from state j to state j + 1: 

j < j1 < j2 …< jn-1 < jn.    (23) 

In other terms, we consider the process graph in which the transition only to the neighbouring 

state is allowed, that is, "jumps" are excluded. 

To formulate the model, let's use the time-dependent transition matrix P. Each element of this 

matrix pij is a probability that the system will change from state i to state j during a certain period. 

Then if the initial state p0 is known, then the future state of the system can be predicted for any 

arbitrary time t. 
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Future state vector pt can be obtained by multiplying the initial state of vector p0 to transition 

matrix P in degree t (the number of years) [3, 4]. The initial state of the system is set by the tape-

matrix p0  in size [1 X n]: 

p0 = [p1, p2, …, pn],     (24) 

where pi – probability of being in state i = 1, 2, …, n; п – the number of discrete states. The system state 

vector for time t is defined as the product of transition matrix P on the initial state vector of the system: 

pt = R0 X P
t
,     (25) 

where P
t
 – transition matrix P in degree t; R0 – probabilities vector in the initial state. 

Next, a certain states vector is introduced d in size [n X 1] – vector of the fixed rating expert 

assessments of the structure in safe operation: 

d = [r1, r2, …, rn]
T
,    (26) 

Here T – the transpose sign; rand  – ratings, real numbers, i = 1, 2, …, п. 

The technical condition of the structure for any time t is defined by the dependency: 

Dt = p0 X P
t
 X d,    (27) 

where Dt – rating assessment of the structure at time t – scalar; p0 – matrix-tape in size [1 X n] 

probabilities in the initial state t0; P
t
  – transition probability matrix P in degree t in size [n X n]. 

Presentation of the main research material. Here is a hypothetical illustrative example that 

demonstrates the procedure for implementing the Markov model to predict the structure state based 

on the known transition probability matrix. For the construction: the number of fixed discrete states 

is 5; the initial state vector (the safe operation rating vector): 

d = [10 8 6 4 2]
T
, 

– Matrix-tape in size [1 X n] R0 probabilities in the initial state at t0: 

p0 = [1 0 0 0 0]: 

– transition probability matrix: 

















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
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000,3300,6790

0000,0610,939

P .   (28) 

Find the construction rating forecast after t = 5 years in operation. 

The solution is the technical condition of the structure expressed in a rating assessment on a 

scale of 10 – 2 points after 5 years in operation for any time t is defined by the dependency: 

  066,9
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
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
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
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Formulation of the transition matrix based on statistical data. In the theory of structures, 

the statistical approach of formulating the transition matrix, which is based on historical data of the 

operating system, is now widespread. Most of them are based on the dependencies of the 

probability theory obtained by J. R. R. Tolkien. Bogdanoffim and F. Kozin [12-14], where the 

distribution of discrete states for each year W(t) is obtained by multiplying the distribution of the 

previous state by transition matrix P0: 

W(t) = W(t – 1)×P0,    (29) 

where W(t –1) – a vector of the previous state distribution. 
Let's use the simplest of them – estimating the relative number of bridges in each of the states. 

The elements of the transition probability matrix are determined by formula: 
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pij = nij / ni:     (30) 
where nij – the number of clicks from state i into state j within a given time period; ni – the total 
number of bridges in the state at the beginning of the specified time period. 

Let's show the procedure to obtain a transition probabilities matrix using the example of 
statistical data obtained from the road bridge operation system. Let's look at the historical data of 
reinforced concrete bridges of all types in operation. The state distribution of all types of bridges is 
shown in Table 1 below. 

 

Table 1– Distribution of road bridges by operational condition 

State 1 2 3 4 5 Total 

In absolute terms, units.  112 758 4288 1751 122 7031 

In percentage, % 1.6 10.8 61.0 24.9 1.7 100 
 

From Table 1 we obtain a super diagonal elements' vector of the transition probability matrix 
P:  pij, i = 1, 2, 3,…, 4; j = i + 1. 

pij = [0.016  0.108  0.610  0.249]
T
.   (31) 

The corresponding transition probability matrix will have value: 

























10000

0,2490,751000

00,6100,39000

000,1080,8920

0000,0160,984

P

.   (32) 

The transition probability matrix of one year in operation is calculated as P
2
: 

























10000

0,4360,564000

0,1520,6960,15200

00,0660,1380,7960

000,0020,0300,968

2
P

.    (32а) 

The transient probabilities matrix predicted after 5 years in operation will have value: 

























10000

0,7610,239000

0,6030,3880,00900

096,00,2200,1200,5650

001,0006,00,0080,0620,923

5
P

.   (32б) 

Let's introduce a 100-point rating system. (An important note: the technical condition 
criterion in this model is a rating assessment of the technical condition of the structure), Table 2. 

 

Table 2 – Rating assessment of the structure in operation  

State in operation Evaluation scale, points  

State 1. Workable 100 - 79 

State 2. Limited workable 80 - 59 

State 3. Workable 60 - 39 

State 4. Limited workable 40 - 19 

State 5. Unworkable ≤ 20 
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Algorithm forecasting the technical condition of structures. The algorithm for 

implementing the Markov chain model for predicting the technical condition of the structure as a 

whole is given in Table 3.  
 

Table 3 – Algorithm for predicting the technical condition of hydraulic structures 

Step Operation 

1 

Calculating super diagonal elements of the transition probability matrix with using 

formula (4.30): pij = nij / ni where nij – the number of clicks from state i into state j within 

a given time period; ni – the total quantity of bridges in the state and at the beginning of 

the specified time period. Diagonal elements are calculated as an addition to 1. 

2 The initial state of the system is set by the tape-matrix p0  by form (27). 

3 
The system state vector is calculated for time t as a product of the transition matrix P in 

degree t on the initial state vector of the system by formula (26) pt = p0 X P
t
.  

4 
A defined states vector is introduced d in size [n X 1] (a safe operation rating vector) by 

formula (27) d = [r1, r2, …, rn]
T
.  

5 

Technical condition of the structure for any time t is defined by dependency (28) Dt = p0 

X P
t
 X d, where Dt – rating assessment of the structure for time t – scalar; p0 – matrix-

tape in size [1 X n] probabilities in the initial state t0; P
t 
–  transition probabilities matrix 

P in degree t in size [n X n]. 
 

The Markov phenomenological model of damage accumulation. The Markov models of 

random processes described above are universal. The random process described by the model is 

invariant to the type of modeling object, to the material, and to the operating conditions. As for the 

failure intensity parameter, it is the subject of a special study in the phenomenological model of 

damage accumulation, its definition in our model is given below. 

The task is to develop a phenomenological probabilistic model of the degradation of a 

structural element in operation. The element degradation model aims to establish the law of 

reliability in the time function and, thereby, give an apparatus for predicting its technical condition. 

The model developed by us has two components: the phenomenological classification tables of 

discrete states and the reliability function. The following four hypothetical propositions form the 

theoretical basis of the model. 

A. The numerical reliability parameter is taken as a criterion for the technical condition of an element. 

В. The element's life cycle is divided into 5 discrete states. Each of the states is described by a 

selection of quantitative and non-formalized qualitative degradation indicators that characterize the 

hierarchy of the element failures. 

С. The process of element degradation during the life cycle is described by a discrete model 

of a random Markov process with continuous time. 

D. The transition from one discrete state to another is described as a Poisson process with 

discrete states and continuous time by formula (25). 

Discrete states of the element. The system evolution will be described by the Markov 

discrete process with continuous time [5, 6]. Let's formulate the Markov process for models in 

which wandering through discrete states is carried out only in one direction: from the state with a 

smaller number to the state with a larger number. At the same time, the transition is possible not 

only to the neighbouring state but also by "jumping" through neighboring states. In terms of the 

discrete Markov process, the problem is reduced to the search for unconditional probabilities of 

finding a system S at an arbitrary step k in state Si.  

The system of failures, which is a consequence of the wear and tear of the structure element, will 

be considered a stream of random discrete Markov chain events. The process with "qualitative states" 

is considered. The role of a random variable is played by the "random discrete state of the system".  

During the life cycle of an element in operation let's introduce 5 discrete states that form a 

tuple S = {S1, S2, …, S5}. Discrete states are described by a selection of qualitative and quantitative 

indicators of no formalized degradation indicators that characterize the hierarchy of element failures 
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[7, 13]. A generalized description of states that represent damage accumulation as a hierarchy of 

gradual element failures is given in Table 4. 

Table 4 – General characteristics of states 

State State characteristics 

S1 The element meets all the project requirements. 

S2 
The element partially does not meet the requirements of the project, but the 

requirements of either the first or second groups of limit states are not violated.  

S3 

The element partially does not meet the project requirements, but the requirements of 

the first group of limit states are not violated. A partial violation of the requirements 

of the second group of limit states is possible, if this does not limit the normal 

functioning of the structure.  

S4 
The element has signs of violations of the requirements of the first group of limit 

states and serious violations of the requirements of the second group of limit states. 

S5 
The element has serious violations of the requirements of the first group of limit states 

and it turns out that it is impossible to prevent them and stop its operation.  

Phenomenological description of the process of element degradation of a hydraulic 

structure. The process of element degradation during the life cycle is described by discrete state 

classification tables. These tables, depending on the type of material and the design purpose of the 

element, are compiled on the basis of the experience of expert scientists [5, 7] on supervision, 

diagnostics, inspection and the testing of structures. In Table 5 an example of describing discrete 

states of construction structure elements is given. 

Table 5 – Operational conditions of pre-stressed reinforced concrete elements 

State Defect or violation 
Wear 

level, % 

1 

Single chipping of small rebar sizes in concrete 
Single sinks in the concrete of small sizes without exposing the reinforcement 
Single hair cracks without rust marks with opening up to 0.2 mm 
Hydrogen index ph=11 

0-1 

2 

Local temperature-shrinkage cracks with opening up to 0.1-0.2 mm 
Local chipping of concrete without exposing rebar 
Local sinks without exposing fittings 
Local smudges without exposing the reinforcement 
Hydrogen index ph=10 

2-4 

3 

Numerical chips in the stretched area of the structure 
Numerous sinks in stretched concrete 
Traces of leaching on the element surface  
Hydrogen index ph=9 
Single opening of force cracks in inclined sections or along the reinforcement 

5-14 

4 

Cracks in the stretched concrete with an opening of more than 0.2 mm 
Inclined force cracks in support zones 
Temperature cracks in support zones 
Traces of concrete leaching on the element surface  
Hydrogen index ph=8 

15-33 

5 

Longitudinal cracks in compressed concrete along pre-stressed reinforcement 
with peeling of the concrete protective layer 
Traces of rust near cracks 
Uneven deflection of bent elements  
Hydrogen index ph=7 

≥ 34 
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Reliability function. The reliability function describes the process of element degradation 

during the life cycle, that is, it establishes a relationship between reliability and the service life of 

the element. It is postulated that degradation speed is described by one parameter  – an indicator 

of the failure rate. This indicator is assumed constant, independent of time =  (t). 

For the reliability function according to hypothesis D, the Poisson distribution law is adopted. 

When k = 5 the function has the form: 

  .)(008333,01)( )(5 ttetttP   (33) 

where Pt – the probability that the element will enter state k within the time t < Tk . 

Thus, at a given failure rate , dependence (33) establishes a relationship between the 

reliability of the element Pt  in i- state and time t, passed from the start of the operation to state 

i=2,...5. 

Transition probabilities matrix. Model A. The model is represented by the process, whose 

graph is shown in Fig. 1. This is a discrete process with continuous time. The system can 

sequentially move from one neighbouring state to another with a larger number, or stay in any of 

them.  State 5 is absorbing. This means that the system does not have the exit of state 5. 

Fig. 1. Model A. Process graph 

Let's define matrix P(i, t) and matrix E by the Kolmogorov–Chapman equations (17). To 

simplify writing matrix elements, their shape will be changed slightly. In the future, the argument t 

with the transition probability pi(t), i = 1, 2, 3, 4 and transition intensities )(t  and argument (i, t) at 

matrix  P(i, t) will not be written.  

In model A, let's set the transition intensities independent of the step and time: 

 )()( ttij . (34) 

Matrix E will look like this: 

 T
E , (35) 

and equation (20) in this case is simplified and written as follows: 

P
P


dt

d
(36) 

According to the process graph of model A, the system of equations (36) will be: 









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


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







34

23

12

1 0

pp

pp

pp

p

dt

dP
, (37) 

Integrating the system of equations (37) under conditions (21, 22) gives the values of the 

transition matrix elements: 

























10000

0392,09608,0000

00296,09704,000

000198,09802,00

0000100,09900,0

0P . (38) 
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The initial unconditional probability is accepted pk = 0.9998 (β=3.8. Here β is the safety 

characteristic, and the numerical parameter is related to reliability by the relation: Pt = Ф-), where 

Ф is the standard function of the normal distribution), which corresponds to the minimum standard 

value of the design reliability in state 1. By formula (21), an unconditional probabilities vector is 

obtained in state j: 

 T9047,09416,09703,09899,09998,0jP .  (39) 

According to the known unconditional probabilities vector of the system in state j = 1, 2,..., 5 

degradation curves are defined, i.e. a family of implementations of a stochastic process, each of 

which, at a given value of the failure intensity parameter,  gives transition time forecast from state 

j into state j + 1 [8, 9].  

Model B. Model A describes the stochastic process of gradual accumulation of damage. In 

reality, the ageing process of a structure element consists not only of gradual failures but also of 

sudden ones. This is exactly what model B is. In it the process of damage accumulation contains 

sudden "jumps" over one state, as shown in the process graph Fig. 2. 

It is also a discrete process with continuous time, with evenly distributed time intervals 

between the states. The system can remain in any of them, sequentially move from one 

neighbouring state Si to another one with a larger number Si+1, or jump over a nearby state Si+1 to 

the next one Si+2. State 5 – absorbing. 

 
Fig. 2. Model B. Process graph 

 

According to the process graph of model B (fig. 2) the system of equations (17) will be: 
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223141
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
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



P
,    (40) 

here 1 transition intensity from state Si in state Si+1; 2  – transition intensity from state Si in state 

Si+2; 21   . 

The transition intensity to the neighbouring state is assumed 1 and the "jump" transition 

intensity 12 05,0   . The numerical solution of the system of differential equations (40) by the 

Runge-Kutt method gives the values of conditional transition probabilities from which the transition 

matrix is formed: 









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
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
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
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
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0044,09560,000

00199,00097,09704,00
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0P
.  (41) 
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The initial unconditional probability is assumed, as for model A pk = 0.9998 (β = 3.8) and by 

the known values of conditional transition probabilities P0 and by formula (24) an unconditional 

probabilities vector is obtained in state j of a stochastic system of model type B: 

 T8605,09138,09558,09849,09998,0jP .  (42) 

As expected, the probability in states 2-5 is lower compared to model A, which can be 

interpreted as an implementation in the process of sudden failures. 

Determining the failure rate parameter. Determination of the failure intensity parameter is 

the dominant feature of the Markov phenomenological model of accumulation of damage to 

construction structure elements. As seen from dependency (36), the only parameter of lifecycle 

management is the failure rate. In the model under consideration, the parameter is determined by 

solving equation (33) under the initial conditions for an individual element obtained from the survey 

results. The procedure for determining the parameter was first proposed in 1999. It is in a specific 

definition of the initial conditions for equation (36) with respect to an unknown parameter : 

– reliability Pt,i is related to a specific task i-th technical condition. This value becomes

known as soon as the discrete state of the element is classified according to the survey data, and ti – 

the time elapsed from the start of operation of the element to state i. Time ti is known from the 

technical documentation of the bridge. A graphical interpretation of the parameter determination 

procedure is given in Fig. 3. 

It is obvious that the proposed method for determining the parameter value of a structural 

element that controls the "nowadays", that is, with i-th discrete state, a life cycle model, provides 

complete information about the load history in "the past", and not only that. The failure rate 

parameter defined by this procedure contains a lot of other information about the operation of the 

facility, related to the characteristics of the environment, the level of loading effects, the quality of 

construction, design features, etc. 

State 2

State 4

State 3

Fig. 3. Graphical interpretation of the failure intensity parameter definition  

72
_________________________________________________________________________________________________________

Modern construction and architecture, 2023, no. 3, page 61-76

________________________________________________________________________________________________________________________________________________________________________________________________________________________HYDROTECHNICAL AND TRANSPORT CONSTRUCTION 



Predicting the remaining resource of the element. The forecast of the remaining resource is 

determined, again, by solving the degradation equation (36). The initial data for solving the 

equation is now the reliability of element Pt,5 – the limit value of reliability in the 5th operational 

state and the parameter of the element failure rate determined in the previous step from equation 

(36) . 

The time determined under these initial conditions is T5 – that is, the time that passes from the 

current state of the element to the fifth operational state and is the remaining resource. 

An example of the model implementation is the new regulatory documents for the system of 

road bridges' operation in Ukraine [5, 6]. 

Analysis of model. A. As seen from the above formulation, the model is theoretically strictly 

justified. However, the fact that the model is phenomenological requires a deep insight into the 

physical essence of the described process, because it is necessary not only to adequately describe 

each of the discrete states but also to establish changes in parameters correctly within one discrete 

state, while the simulated process is continuous. 

Б. The decision on the number of discrete states representing the life cycle of an element is 

quite subjective. It is clear that the more discrete states there are, the more accurately the continuous 

process of damage accumulation is described. On the other hand, describing a large number of 

discrete states requires a significant expansion of the database of reliable full-scale data. The model 

developer decides where the reasonable satisfaction of these conflicting requirements is. 

В. An important theoretical side of the model is the graph of the element degradation process. 

The graph of the model, which depends on the number of discrete states and the connections 

between them, will always be the subject of special attention on the part of the researcher, and will 

always reflect his subjective idea of the essence and regularities of the process. 

Г. Another fundamentally important aspect of the model is the question of the developer's 

definition of the failure intensity function λ(t), which is generally a random function of time. 

However, there is no standard procedure here, and the researcher has to look for special techniques 

for determining this basic parameter of model control. 

The economic effect of forecasting the resource of hydraulic structures. Assessment of 

the possible economic effect of forecasting the resource of construction structures is performed 

according to criterion Zзр, which takes into account the operating costs of managing the object's 

state. The minimum goal function is obtained with using the penalty method: 
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where Ct,i – operating expenses for managing the condition of the construction structure i per year t, 

UAH; Si,t – operational condition; βmin – minimum allowable value of the safety characteristic; βi,t – 

a value of the safety characteristic of the i-th construction structure per year t; r – discount rate 

adjusted for the inflation rate, BIi,t – importance factor (priority) i-th element at the beginning of the 

year t. 

The time-dependent priority of a construction structure is determined by formula: 

,)()(
11
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iik
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i
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FFt

 
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 (44) 

where NFt – the number of factors of influence that depend on time t, in years; NF – the number of 

factors of influence that do not depend on time; wi – normalized impact factor i-th factor, 

(established by experts using the Saati method, 1
1




FN

i

iw ); fi – dimensionless value of importance i- 

the structure element determined by an expert. 

Thus, criterion Zзр – is the number of operating expenses adjusted for the penalty ratio. If the 

safety characteristic β falls below the specified minimum allowable value of the function value Zзр 

will increase, which serves as a barrier to an unjustified decrease in the permissible value of βmin 
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security features. Through fines, the achieved condition of the facility is taken into account, and 

better condition means minimizing operating costs and maximizing external positive effects. 

The minimum allowable level βmin is set based on an economic justification, but it cannot be 

less than the maximum permissible limit for the safety requirements for the operation of a 

construction structure element, for example, less than 1.74. 

Conclusions. Assessment of the possible economic effect of forecasting the resource of 

hydraulic structures is performed according to Z criterionзр. It represents the number of operating 

expenses adjusted for the penalty ratio. When the safety characteristic β falls below the specified 

minimum allowable value, the value of the function Zзр will increase, which serves as a barrier for 

unjustified reduction of the allowable value βmin of the safety characteristic. Through fines, the 

achieved condition of the facility is taken into account, and better condition means minimizing 

operating costs and maximizing external positive effects. The minimum allowable level βmin is set 

based on the economic justification, but it cannot be less than the maximum permissible limit for 

the safety requirements for the operation of hydraulic structures. 

The reliability function describes the process of degradation of hydraulic structures during the 

life cycle, that is, the relationship between reliability and the operating time of the element is 

established. It is postulated that the degradation rate is described by one parameter – an indicator of the 

failure rate. This indicator is assumed constant, independent of time. 
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Анотація. Встановлено, що в термінах дискретного марковського процесу задача 

зводиться до пошуку безумовних ймовірностей перебування системи S на довільному кроці k в 

стані Sі, тобто отримання матриці перехідних ймовірностей. В такому формулюванні модель 

служить для: оцінки технічного стану елемента; оцінки рівня безпеки експлуатації елементів 

конструкції; ранжирування елементів за потребою ремонтів, реконструкції або заміни; в 

стратегічному плануванні видатків на ремонт або реконструкцію за умов обмеженого 

фінансування та прогнозу залишкового ресурсу елементів. 

Встановлено, що теоретичним базисом дослідження, що має за мету прогнозування 

ресурсу гідротехнічних споруд у процесі експлуатації, є марковська теорія випадкових 

процесів. Для математичного опису процесу деградації елементів найбільш вдалим є 

математичний апарат випадкових марковських процесів. 

Визначення параметра інтенсивності відмов є домінантою марковської 

феноменологічної моделі накопичення пошкоджень елементів гідротехнічних споруд. 

Єдиним параметром управління життєвим циклом є інтенсивність відмов . В моделі, що 

розглядається, параметр  визначається за початкових умов для окремого елементу, 

отриманих за результатами обстеження. 
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За рахунок того, що параметр λ визначається для окремого елемента і має 

уточнюватися кожного разу після чергового обстеження, точність моделі підвищиться. 

Модель, що пропонується, є інтегральною. Вона не містить явного теоретичного апарату 

чуйного до матеріалу елементу, його статичної схеми, технології спорудження, екологічних 

умов та такого іншого. З іншого боку, всі названі фактори і багато інших, другорядних, 

беруться до уваги в моделі в момент, коли за допомогою класифікаційних таблиць, що 

містять фізичні і механічні ознаки деградації, визначається стан елемента. 

В теорії споруд поширеним є статистичний підхід формулювання матриці переходів, в 

основі якого лежать історичні дані системи експлуатації споруди. Вважається, що матриця 

переходів розбудована за даними системи експлуатації є більш реалістичною основою для 

прогнозу процесів деградації споруд. Практичному застосуванню матриці переходів 

розбудованої за статистичними даними присвячена велика кількість зарубіжних досліджень 

в яких розглядаються особливості матриць переходів пов’язані з системою експлуатації 

мостів різних країн. В такій постановці кожен елемент матриці перехідних ймовірностей Р є 

ймовірність того, що система яка була в стані і перейде в стан j за один крок (тобто за один 

рік). При цьому вважається що відсутні експлуатаційні втручання, тому піддіагональні 

елементи є нульовими. Як і раніше сума елементів одної строки дорівнює 1 і елемент pjj = 1 

тому як стан j є поглинаючим. 

Для алгоритму реалізації моделі марковського ланцюга для прогнозування технічного 

стану гідротехнічних споруд в цілому вихідними даними є: статистичні дані розподілу 

споруд по станам на час прогнозу, рейтингова оцінка споруди обчислена експертом згідно 

шкали та час прогнозу в роках. 

Встановлено, що деградаційні властивості конструкцій споруд описуються двома 

параметрами: критерієм деградації та інтенсивністю відмов. Критерієм деградації може бути 

прийнятий будь-який фактор напружено-деформованого стану: надійність, внутрішні зусилля, 

деформації. Критерієм деградації може виступати довільна рейтингова оцінка. В нашому 

випадку за критерій деградації приймається надійність елемента, як найбільш загальний фактор 

напружено-деформованого стану. 

Ключові слова: гідротехнічні споруди, деградація конструкцій споруд, Марковська 

модель, термін служби. 
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