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Abstract. The article is devoted to the study of the influence of the position of supports of rod 

systems containing longitudinally compressed elements on their critical forces and the 

corresponding forms of buckling. Many issues related to the design and operation of such systems, 

in particular ensuring their stability, require taking into account the features of these forms, in 

particular the location of their nodes, extreme points, etc. Of special complexity is the case of a 

multiple critical force, for which the buckling mode is not uniquely determined, since an infinitely 

many buckling modes correspond to a multiple critical force. In the proposed work, for the case of a 

concentrated deformable or absolutely rigid hinged support, it is studied how, with a small 

displacement of the support, two simple critical forces are formed from a multiple critical force, and 

two uniquely determined buckling forms are formed from the corresponding infinite set of forms. In 

this case, significant use is made of analytical and qualitative methods of the theory of stability of 

rod systems, in particular, well-known theorems on the influence of imposing constraints on their 

critical forces, as well as previously established relationships determining the derivatives of the 

critical forces with respect to the coordinates determining the positions of the moving supports. 

Analytical expressions are proposed that allow one to describe the buckling modes formed after a 

small shift of the support in one direction or another, from which, in particular, it follows that on a 

moving support the angles of slope of the rod axis for these forms at the same value of the support 

reaction are numerically equal, but opposite in direction. The conclusions of the article are 

demonstrated on specific examples of two-span prismatic rods compressed by a longitudinal force 

constant along the length. In one of them, the position of the deformable intermediate support varies 

with absolutely rigid end supports. In the other, the intermediate absolutely rigid support moves 

when one of the end supports has a finite rigidity. In both examples, at a certain value of the rigidity 

of the deformable support, the main critical force becomes twofold and the rod can lose stability in 

an infinite number of configurations. Direct calculations performed for these cases show that the 

shift of the intermediate support leads to the effect described in the article and confirm its results. 

Keywords: stability, critical force, buckling mode, perturbation, constraint, change of 

position. 

 

Introduction. Ensuring reliable operation of engineering structures requires systematic 

monitoring of their operational characteristics. For structures containing longitudinally compressed 

rods, some of the most important characteristics are critical forces and the corresponding buckling 

modes (forms of buckling). They are determined by the entire set of mechanical and geometric 

parameters of the structure, and it is very important for the designer to be able to control their 

behavior in connection with certain changes in these parameters. In particular, they depend on the 

mechanical characteristics and spatial distribution of the constraints existing in the structure. In the 

proposed work, the relationship of critical forces and corresponding buckling modes with the 

position of concentrated hinge supports that reinforce the elements of rod structures is investigated. 

The case of the influence of support displacement on multiple critical forces is especially studied. 
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Analysis of recent research. One of the ways to increase the stability of engineering structures 

is to increase their critical forces (hereinafter referred to as CRF), at which buckling of their 

compressed elements occurs, through the installation and rational placement of constraints [1 – 9]. In 

this case, the maximum increase in CRFs is often achieved when their multiplicity is achieved 

through the introduction of additional supports. To do this, the introduced supports must be located 

exactly at the nodes of the corresponding buckling modes (hereinafter referred to as BM). In this 

regard, the task of accurately determining both CRFs and BMs, to which extensive literature is 

devoted [1, 10, 11], is of great importance. At the same time, since the optimal placement of 

supports cannot always be practically realized, it is important to be able to estimate the result of 

deviation of the position of the introduced support from the theoretically optimal one. Such 

problems are the subject of perturbation theory [11 – 15] and can be studied using the general 

methods developed in it. However, this may leave out important information that reflects the 

specifics of a particular engineering problem. Therefore, it is important to consider in detail all the 

features and clearly identify the influence of specific perturbations on the practically important 

geometric and mechanical characteristics of the studied engineering objects. For a perturbation in 

the form of a small shift of a concentrated support, these issues in relation to a wide class of rod 

systems are considered in the article [7], where expressions are presented for the derivatives of the 

CRFs with respect to the coordinates that determine the position of the supports, both for the case of 

simple and multiple CRFs. These expressions make it possible to estimate, in a linear 

approximation, the perturbations of the CRFs as a result of the shift of supports. The question of 

perturbation of BMs was not considered in [7]. The BMs corresponding to simple CRFs change 

continuously when the position of the support changes and, to a first approximation, we can assume 

that they are preserved with small shifts. A more complex problem of perturbations of the BMs 

corresponding to multiple CRFs is considered in the proposed work. 

The purpose and objectives of the study. The goal of the proposed work is to determine the 

buckling modes of a rod system that are formed by a small shift of a concentrated hinge support that 

reinforces any of its rods, provided that the corresponding critical force before the shift was 

multiple and an infinite number of buckling forms corresponded to it. Analytical representations of 

these forms are sought, allowing us to study and compare their geometric features. 

Materials and methodology of the study. The study uses the main results of the 

mathematical theory of stability of linear elastic rod systems [1], in particular the expansion of their 

deformed configurations in terms of their buckling forms. A feature of the work is the systematic 

use of the qualitative results of this theory, describing the effect of introducing constraints and 

variations in their location on the critical forces of the systems under study [7]. 

Research results. Preliminary results. This section presents the main results and uses the 

notation of the paper [7]. We consider a system consisting of straight rods subjected to a 

compressive longitudinal load arbitrarily distributed along their length. The presence of areas free 

from compression is allowed. 

Notations and assumptions. The following notations and assumptions are used below: 

S  – an elastic rod system, including specified elastic and rigid constraints that connect points 

of the system to the ground or stationary bodies. 
 1

S  – a system formed from S  with the imposition of one additional constraint. 

 My y  – displacement (configuration, form) of the system – is a function of point ,M  

which determines the position of point M  of the deformed system (in the undeformed state 0y ). 

It is assumed that the vector  My  is perpendicular to the axis of the undeformed rod. It is 

assumed that with the appropriate choice of coordinate system, the configuration is completely 

determined by the scalar function  y x , where the coordinate x  of the point M  is equal to the 

distance measured along the axis of the corresponding rod,  y x  is the numerical value of the 

displacement of the point M  having the coordinate x . 
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 Mq q  – load – a function of point M , which determines the external force applied to 

point M ; it is assumed that the forces q  applied to the rod of the system are perpendicular to the 

axis of the rod. 

 ,q y  – work of load  Mq q  on displacement  My y . If  , 0q y , they say that the 

load q  is orthogonal to the form y , or that the load q  is applied at a generalized node of the form y . 

С y  – a linear operator that determines the internal forces acting on points of the system in 

position  My  (including the reactions of elastic and rigid constraints belonging to the system that 

connect it to the ground). The "–" sign reflects the usual property of elastic structures – to generate 

reactions that counteract the deformation that caused them. 

Ny  – linear operator defining external forces acting along the axis of the corresponding rod 

of the system. These forces form a system of couples acting on the elements of the system and 

arising as a result of their turn at displacement  My y . On segments of the system that do not 

turn or bend at this displacement  . consty , 0N y . 

   , ,N Ny yv v  – work of forces of the system Ny , corresponding to configuration y , on 

displacement v . In particular, for a rod of length , compressed by a unit axial force constant along 

its length: 

     
0

,N y x x dx  y v v .     (1) 

Here and below, the prime denotes the derivative with respect to the coordinate. 

It is assumed that forces Ny  do not cause tension anywhere, but there may be segments free 

from compression, where 0N y . Therefore always  , 0N y y . 

The equation: 

  0С PN y , 

expresses the equilibrium conditions of a system under the action of systems of forces С y  and 

P N y , where P  is a parameter called the compressive force. Its nontrivial solutions 1 2, ,v v , 

existing for a discrete set 1 20 P P    of values of P , constitute a set of BMs, each of which 
jv  

corresponds to its own value 
jP , called CRF, 

  0j jС P N v . 

The forms 
jv  are determined up to a constant factor, which is chosen so that the 

normalization conditions  , 1j jN v v  are satisfied. In addition, the orthogonality relations also 

hold: 

 , 0i ji j N  v v . 

These relations make the forms 1 2, ,v v  convenient for constructing a basis in the space of 

configurations of the system S , but in the general case, in particular at the presence of segments 

free from compression, these forms are not sufficient to represent an arbitrary configuration as their 

linear combination and they should be supplemented with forms 1 2, ,w w  in which all compressed 

segments do not turn and for which 0jN w . 

If there are no internal hinges in the system and there is at least one external fastening, the 

configuration of the system, compressed by force P , caused by an arbitrary transverse external load 

 Mq q , with completeness and an appropriate choice of normalized forms 
jw , can be 

represented in the form of an expansion: 
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 
 ,

,
j

j j j

jP P
 


 

q
y q

v
w w v .    (2) 

If the load  Mq q  is a concentrated shear force applied at a point with coordinate s  and 

directed towards positive  y x , the corresponding scalar representation of the form (2) takes the 

form: 

     
 

 j

j j j

j

s
y x s x x

P P
 


 

v
w w v .    (3) 

Perturbations of the CRFs at small shifts of a point support. If the system 
 1

S  is formed from 

S  by introducing an elastic or absolutely rigid point hinge support at a point with coordinate s , 

then, as was noted in [4, 7], the derivative of a simple CRF of the system 
 1

S  equal to P , 

regardless of its number in the spectrum of CRF, is equal to: 

 

 
2

,

Ry sP
P

s N


  

 y y
,     (4) 

where R  is the magnitude of the reaction of the moving support, positive when it acts in the 

direction opposite to the positive deflections  y x . 

A multiple CRF corresponds to an infinite set of BMs, the dimension of which is equal to the 

multiplicity of the CRF. Therefore, the expression in equation (4) loses its meaning due to 

uncertainty  y s . If in this case the support turns out to be in the node of each of the BMs of the 

system S  corresponding to P , and the multiplicity of P  in 
 1

S  remains the same as in ,S  then, as 

follows from considerations of [7], 0P  , and equation (4) remains valid, because when the system 
 1

S  buckles under the action of force P  along any of the corresponding forms 0R  . 

If the installation of a support in the node 0s  of each of the BMs 
kjv  of the system S  

corresponding to its CRF equal to kP  of multiplicity r  (in S ), 1r  , led to the formation in 
 1

S  of 

a new form y  corresponding to the same CRF (in this case 0R  ), equation (4) becomes 

inapplicable because in this case, the shift of the support leads to the appearance of two different 

simple CRFs bP  and aP , b k aP P P   , the derivatives of which (one-sided) at 0s s  are determined 

by the relations ([7]): 

 

 
02

,
b a

Ry s
P P

N


  

y y
,   

 
 

2
2

0

1,

r

b a kj

j

R
P P s

N 

    
y y

v ,   (5) 

where the notation has the same meaning as in equation (4),      1 2, , ,k k krx x xv v v  are 

the BMs of the system S  corresponding to its CRF equal to kP , 

     1 0 2 0 0 0k k krs s s   v v v . 

Perturbations of the BMs corresponding to multiple CRFs. If, when installing a support of 

appropriate rigidity in a node 0s  of the form  k xv  corresponding to the CRF kP , its multiplicity 

has increased,  1
1k kP P  , a new BM appears, which was not in S  and which, according to 

equation (3) may be determined by the relation ([7]): 

     
 

 0

0

j

j j j

j k j k

s
y x R s x x

P P

 
   

  
 

v
w w v ,   (6) 

where R  is the magnitude of the reaction of the introduced support, positive when it acts in 

the direction opposite to the positive deflections  y x . Note that in the expansion in equation (6) 

there are no members containing the BMs  k xv  of the system S  that respond to kP . The 
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orthogonality condition  , 0kN y v  follows from this. 

When the support shifts from 0s  to s , the multiplicity of kP  in 
 1

S  decreases and two new 

CRFs bP  and aP , b k aP P P   appears, the larger of which in accordance with equations (3) and (6) 

corresponds to the BM: 

   
 

     
1

1 r
j

j j j kj kj

j k jj а k а

s
R s x x s x

P P P P 

 
   

   
  

v
w w v v v , 

which in the limit at 0s s  takes the form: 

       0

1

r

a kj kj

jа

R
y x y x s x

P 

 

v v ,    (7) 

where aP  is the one-sided derivative of aP  with respect to s , calculated at 0s s  from 

equations (5),  y x is unperturbed (before the support shift) BM of the system 
 1

S , determined by 

equation (6). 

The perturbed BM corresponding to the smaller CRF bP  is determined similarly, 

       0

1

r

b kj kj

jb

R
y x y x s x

P 

 

v v .    (8) 

From (5), (7) and (8) the equality follows: 

   0 0 0a by s y s   . 

which means that on a moving support the angles of slope of the rod axis for the forms  аy x  

and  by x  at the same value of the support reaction are numerically equal, but opposite in 

direction. 

Note also that  аy x  and  by x  from (7) and (8) satisfy the orthogonality condition 

 , 0a bN y y .  

Forms  аy x  and  by x  give an enough accurate representation of the BMs of the system 

 1
S , if s  is close enough to 0s . At 0s s  CRFs bP  and aP  are simple and their derivatives must 

satisfy equation (4), established for simple CRFs, i.e. following equalities must be satisfied: 

 

 
0

0
2

,

aa
a

s s a a

Ry sP
P

s N


  

 y y
,    

 

 
0

0
2

,

bb
b

s s b b

Ry sP
P

s N


  

 y y
.   (9) 

To verify the validity of the first of them, we note the validity of the following relations: 

     2

0 0 0

1

r

a kj

jа

R
y s y s s

P 

   

v .    (10) 

From equation (5) next relations follow: 

   
2

2

0

1

,
r

kj b

ja

R
s N P

P 

  

v y y ,        0 ,

2

b аP P
Ry s N

 
  y y , 

whence: 

           
2

2

0 0 0

1

, , ,
2 2

r
b а a b

a kj b

jа

P P P PR
Ry s Ry s s N N P N

P 

    
       


v y y y y y y .  (11) 

From equation (7) taking into account orthogonality  , 0kjN y v  it follows: 

           
2

2

02
1

, , , , ,
r

b а b
а а kj

jа а а

P P PR
N N s N N N

P P P

  
    

  
y y y y y y y y y yv . (12) 
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Comparing equations (11) and (12), we get the first of the equalities: 

 

 
02

,

a

а

а а

Ry s
P

N




y y
,   

 

 
02

,

b

b

b b

Ry s
P

N




y y
, 

in full accordance with equation (4). The second one is established in the same way. 

We will demonstrate the results obtained using examples. 

Example 1. A rectilinear prismatic rod (see Fig. 1) of length , hinged at the ends on rigid 

supports and compressed by a longitudinal force constant along the length, is supported by an 

elastic hinged support in its middle, which is the node of the 2nd BM. 

 

Fig. 1. A rod having a double main CRF at 
2

cr 3

16 EJ
с c


   

With a support stiffness coefficient equal to 
2

cr 3

16 EJ
c


 , where EJ  is the bending stiffness 

of the rod that is constant along the length, its main CRF becomes double and equal to the 
2

2

4 EJ
 – 

2nd CRF of a single-span rod. It corresponds to two linearly independent BMs, defined by the 

equations ([10]): 

 2

1 2
sin

2

x
x

 
  
  

v ,     (13) 

 

 
   

3

3

3

3

2 2
sin , if ,

16 2

2 2
sin , if .

16 2

x x
x

EJ
y x

x x
x

EJ

     
     

  
 

               

  (14) 

The form  2 xv  is shown in Fig. 2 a),  y x  – in Fig.  2 b). In all figures, the distance from 

the left end of the rod is plotted along a horizontal line and is indicated in fractions of . Vertically 

in Fig. 2 b) ordinates  y x  are shown in fractions of 
3

3EJ
 at 1R  . 

 

Constant coefficients in equations (13) and (14) are determined by normalization conditions. 

The form  2 xv  satisfies the condition: 

  

Fig. 2. BMs of the rod shown in Fig. 1, corresponding to its main double CRF 
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   2

2 2 2

0

, 1N x dx v v v .     (15) 

The form  y x  corresponds to a reaction value of the intermediate support equal to 1. In this 

case: 

   
 

5
2

24
0

3
,

128
N y x dx

EJ
  


y y . 

The forms  2 xv  and  y x  also satisfy the orthogonality condition: 

     2 2

0

, 0N y x x dx  y v v . 

Due to symmetry of  y x  on the intermediate support  2 0y   (see Fig. 2 b)), from 

where, according to equation (5) equalities follow: 

 

 

 

 

2
2 2

3

2 2 16

3, ,
a b

R EJ
P P

N N

  
     

v v

y y y y
. 

They correspond to two perturbed BMs: 

   
 

   
 

 
   2 2

2 2

2

2 2
,

2
а

a

R R
y x y x x y x N x

P R

 
    

 

v v
v v

v
y y  

     
5 2 3

2 32

3 3 2
sin

168 2

x
y x x y x

EJEJ

 
     

  
v , 

   
3

3

3 2
sin

16
b

x
y x y x

EJ

 
   

  
. 

The forms  аy x  and  by x  are shown in Fig. 3 a) and 3 b) respectively. 

  

Fig. 3. Perturbed BMs of the rod shown in Fig. 1, corresponding to its main double CRF 

when the support shifts in the limit at 0 2s s  ; a) –  аy x , b) –  by x  

Example 2. A two-span rod (Fig. 4) of length , supported at the ends on hinged supports, 

one of which is absolutely rigid and the other deformable, is compressed by a longitudinal force 

constant along the length. 
 

 

Fig. 4. A rod having a double main CRF at  2c P a   
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It has a double main CRF equal to the 2nd CRF 2P  of a single-span rod supported at the ends 

on absolutely rigid hinge supports, provided that the absolutely rigid intermediate support is located 

in the node of the 2nd BM of this single-span rod, corresponding to 2P , and the stiffness coefficient 

of the end deformable support is equal to  2c P a  , where a  is the coordinate of the 

intermediate support, equal to the distance of the node of the 2nd BM of the single-span rod from 

the rigid end support. 

This CRF corresponds to two linearly independent BMs, one of which  2 xv  is the BM of a  

single-span rod supported at the ends on absolutely rigid hinged supports which corresponds to its 

2nd CRF equal to 2P , and the second is the semi-curved one ([2, 3, 9]) and is determined by the 

equalities: 

 
    2 2

0, if ,

, if .

x a
u x

x a x a a x


 

    v v
   (16) 

 The form  u x  for a prismatic rod of a constant bending stiffness is shown in Fig. 5 a), 

where the ordinates are indicated in fractions of 
1

2
 according to the definitions of 

equations (13) and (16) and normalization of the form  2 xv  by equation (15). 

  

Fig. 5. BMs of the rod shown in Fig. 4 for a prismatic rod of a constant bending stiffness; 

a) – semi-curved  u x , b) –  y x  orthogonal to  2 xv  

Unlike the previous example, the forms  2 xv  and  u x  are not orthogonal. Therefore, to 

determine the perturbations of the CRFs and BMs, we form their linear combination: 

                           2y x x u x v ,      (17) 

which will be orthogonal to  2 xv  at 

 2

2

1

a

x dx

  

 v
. 

In this case, as calculations show, 

        2 2 2

2

0

, 1N y x dx a a       y y v . 

The form  y x  for a constant bending stiffness is shown in Fig. 5 b) in the same units as 

 u x  in Fig. 5 a). 

Since when the rod is buckled according to the form  2 xv , all support reactions are equal to 

zero, when buckling according to the form  y x  they will be the same as when buckling according 

to the form  u x , in which the left end support is not loaded, and the two remaining reactions 
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form a couple in which the reaction of the end support is equal to    R cy , and the reaction of 

the intermediate support is equal to: 

        2 2 2R R a cy c a a P a        v v . 

Moreover, since   0u а  , from equation (17) it follows that    2y а а  v . This allows us 

to write down the equations (5) in the form: 

2
b a

q
P P

Y
   ,     

2

b a

q
P P

Y
    ,     (18) 

where    2

2 2 2q R а P a   v v ,  ,Y N y y . 

From equation (18) we find: 

 2

2 2

1 1 1 1
a

Y Y
P q P a

Y Y

   
   v ,     2

2 2

1 1
b

Y
P P a

Y

 
  v . 

The corresponding perturbed forms according to equations (7) and (8) are determined by the 

equalities: 

       21 1аy x y x Y x    v ,          21 1by x y x Y x    v .  (19) 

In the case of a rod of a constant cross-section: 

 2

1 2
sin

2

x
x

 
  
  

v ,  2, 5Y    , 

and perturbed BMs  аy x  and  by x  calculated according to equation (19) take the form shown in 

Fig. 6 a) and 6 b) respectively. 

  

Fig. 6. Perturbed BMs of the rod shown in Fig. 4, corresponding to its main double CRF 

when the intermediate support is shifted in the limit at 0 2s s  ; a) –  аy x , b) –  by x  

All calculations in the examples are performed on the basis of known exact analytical 

expressions for the influence functions of compressed prismatic rods with constant bending stiffness 

along the length [10]. 

Conclusions. The results of the article allow, in addition to the perturbations of critical forces 

caused by small displacement of supports, to obtain information about the appearing buckling forms 

of rod systems, as well as to establish some of their geometric features. This information can be 

used in solving various problems related to the design and operation of such systems. 

The study made it possible to better understand and quantitatively estimate the influence of 

changes in the position of constraints on the critical forces and forms of buckling of rod systems. 

The use of the results presented in the article will make it possible to increase the efficiency of the 

design and operation of engineering structures containing elements operating under conditions of 

axial compression. It can be suggested that the ideas and results used in the article can be applied in 

the future when solving more complex problems of control and optimization of the mechanical 

characteristics of various engineering structures. 
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ПРО ЗБУРЕННЯ ФОРМ ВТРАТИ СТІЙКОСТІ СТРИЖНЕВИХ СИСТЕМ, ЯКІ 

ВІДПОВІДАЮТЬ КРАТНИМ КРИТИЧНИМ СИЛАМ, ПРИ ЗМІНІ ПОЛОЖЕНЬ 

В’ЯЗЕЙ 

 
Бекшаєв С.Я.,  

s.bekshayev@gmail.com, ORCID: 0000-0002-5752-5321 

Одеська державна академія будівництва та архітектури 

вул. Дідріхсона, 4, м. Одеса, 65029, Україна 

 

Анотація. Стаття присвячена дослідженню впливу розташування опор стрижневих 

систем, що містять поздовжньо стиснуті елементи, на їх критичні сили та відповідні форми 

втрати стійкості. Багато питань, пов'язаних з проектуванням і експлуатацією таких систем, 
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зокрема із забезпеченням їхньої стійкості, вимагають урахування особливостей цих форм, 

зокрема розташування їх вузлів, точок екстремумів та ін. Особливу складність представляє 

випадок кратної критичної сили, для якої форма втрати стійкості не визначена однозначно, 

оскільки кратній критичній силі відповідає нескінченна кількість форм втрати стійкості. У 

запропонованій роботі для випадку зосередженої деформовної або абсолютно жорсткої 

шарнірної опори вивчено, як при малому зсуві опори з кратної критичної сили утворюються 

дві прості, а з нескінченної множини форм утворюються дві однозначно визначені форми. 

При цьому суттєво використовуються аналітичні та якісні методи теорії стійкості 

стрижневих систем, зокрема, відомі теореми про вплив накладання в'язей на їх критичні 

сили, а також встановлені раніше співвідношення, що визначають похідні від критичних сил 

по координатам, які визначають положення опор, що переміщуються. Запропоновано 

аналітичні вирази, які дозволяють описати знов утворені форми при малих зсувах опори в 

той чи інший бік, з яких, зокрема, випливає, що на опорі, що переміщується, кути нахилу осі 

стрижня для цих форм при одному і тому ж значенні реакції опори чисельно рівні, але 

протилежні за напрямком. Висновки статті продемонстровані на конкретних прикладах 

двопрогонових призматичних стрижнів, стиснутих постійною по довжині поздовжньою 

силою. В одному з них варіюється положення проміжної опори, що деформується, при 

абсолютно жорстких крайніх опорах. В іншому переміщується проміжна абсолютно жорстка 

опора, коли одна з крайніх опор має скінченну жорсткість. В обох прикладах при певному 

значенні жорсткості деформовної опори основна критична сила стає двократною і стрижень 

може втрачати стійкість по будь-якій з нескінченної множини конфігурацій. Прямі 

обчислення, виконані для цих випадків, показують, що зсув проміжної опори призводить до 

ефекту, описаного у статті, та підтверджують її результати. 

Ключові слова: стійкість, критична сила, форма втрати стійкості, збурення, в’язь, 

зміна положення.  
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