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Abstract. The article is devoted to the study of the influence of the position of supports of rod
systems containing longitudinally compressed elements on their critical forces and the
corresponding forms of buckling. Many issues related to the design and operation of such systems,
in particular ensuring their stability, require taking into account the features of these forms, in
particular the location of their nodes, extreme points, etc. Of special complexity is the case of a
multiple critical force, for which the buckling mode is not uniquely determined, since an infinitely
many buckling modes correspond to a multiple critical force. In the proposed work, for the case of a
concentrated deformable or absolutely rigid hinged support, it is studied how, with a small
displacement of the support, two simple critical forces are formed from a multiple critical force, and
two uniquely determined buckling forms are formed from the corresponding infinite set of forms. In
this case, significant use is made of analytical and qualitative methods of the theory of stability of
rod systems, in particular, well-known theorems on the influence of imposing constraints on their
critical forces, as well as previously established relationships determining the derivatives of the
critical forces with respect to the coordinates determining the positions of the moving supports.
Analytical expressions are proposed that allow one to describe the buckling modes formed after a
small shift of the support in one direction or another, from which, in particular, it follows that on a
moving support the angles of slope of the rod axis for these forms at the same value of the support
reaction are numerically equal, but opposite in direction. The conclusions of the article are
demonstrated on specific examples of two-span prismatic rods compressed by a longitudinal force
constant along the length. In one of them, the position of the deformable intermediate support varies
with absolutely rigid end supports. In the other, the intermediate absolutely rigid support moves
when one of the end supports has a finite rigidity. In both examples, at a certain value of the rigidity
of the deformable support, the main critical force becomes twofold and the rod can lose stability in
an infinite number of configurations. Direct calculations performed for these cases show that the
shift of the intermediate support leads to the effect described in the article and confirm its results.

Keywords: stability, critical force, buckling mode, perturbation, constraint, change of
position.

Introduction. Ensuring reliable operation of engineering structures requires systematic
monitoring of their operational characteristics. For structures containing longitudinally compressed
rods, some of the most important characteristics are critical forces and the corresponding buckling
modes (forms of buckling). They are determined by the entire set of mechanical and geometric
parameters of the structure, and it is very important for the designer to be able to control their
behavior in connection with certain changes in these parameters. In particular, they depend on the
mechanical characteristics and spatial distribution of the constraints existing in the structure. In the
proposed work, the relationship of critical forces and corresponding buckling modes with the
position of concentrated hinge supports that reinforce the elements of rod structures is investigated.
The case of the influence of support displacement on multiple critical forces is especially studied.
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Analysis of recent research. One of the ways to increase the stability of engineering structures
is to increase their critical forces (hereinafter referred to as CRF), at which buckling of their
compressed elements occurs, through the installation and rational placement of constraints [1 — 9]. In
this case, the maximum increase in CRFs is often achieved when their multiplicity is achieved
through the introduction of additional supports. To do this, the introduced supports must be located
exactly at the nodes of the corresponding buckling modes (hereinafter referred to as BM). In this
regard, the task of accurately determining both CRFs and BMs, to which extensive literature is
devoted [1, 10, 11], is of great importance. At the same time, since the optimal placement of
supports cannot always be practically realized, it is important to be able to estimate the result of
deviation of the position of the introduced support from the theoretically optimal one. Such
problems are the subject of perturbation theory [11 — 15] and can be studied using the general
methods developed in it. However, this may leave out important information that reflects the
specifics of a particular engineering problem. Therefore, it is important to consider in detail all the
features and clearly identify the influence of specific perturbations on the practically important
geometric and mechanical characteristics of the studied engineering objects. For a perturbation in
the form of a small shift of a concentrated support, these issues in relation to a wide class of rod
systems are considered in the article [7], where expressions are presented for the derivatives of the
CRFs with respect to the coordinates that determine the position of the supports, both for the case of
simple and multiple CRFs. These expressions make it possible to estimate, in a linear
approximation, the perturbations of the CRFs as a result of the shift of supports. The question of
perturbation of BMs was not considered in [7]. The BMs corresponding to simple CRFs change
continuously when the position of the support changes and, to a first approximation, we can assume
that they are preserved with small shifts. A more complex problem of perturbations of the BMs
corresponding to multiple CRFs is considered in the proposed work.

The purpose and objectives of the study. The goal of the proposed work is to determine the
buckling modes of a rod system that are formed by a small shift of a concentrated hinge support that
reinforces any of its rods, provided that the corresponding critical force before the shift was
multiple and an infinite number of buckling forms corresponded to it. Analytical representations of
these forms are sought, allowing us to study and compare their geometric features.

Materials and methodology of the study. The study uses the main results of the
mathematical theory of stability of linear elastic rod systems [1], in particular the expansion of their
deformed configurations in terms of their buckling forms. A feature of the work is the systematic
use of the qualitative results of this theory, describing the effect of introducing constraints and
variations in their location on the critical forces of the systems under study [7].

Research results. Preliminary results. This section presents the main results and uses the
notation of the paper [7]. We consider a system consisting of straight rods subjected to a
compressive longitudinal load arbitrarily distributed along their length. The presence of areas free
from compression is allowed.

Notations and assumptions. The following notations and assumptions are used below:

S — an elastic rod system, including specified elastic and rigid constraints that connect points
of the system to the ground or stationary bodies.

s _a system formed from S with the imposition of one additional constraint.
y= y(M) — displacement (configuration, form) of the system — is a function of point M,

which determines the position of point M of the deformed system (in the undeformed state y=0).
It is assumed that the vector y(M) is perpendicular to the axis of the undeformed rod. It is

assumed that with the appropriate choice of coordinate system, the configuration is completely
determined by the scalar function y(x), where the coordinate x of the point M is equal to the

distance measured along the axis of the corresponding rod, y(x) is the numerical value of the
displacement of the point M having the coordinate x.
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q :q(M) — load — a function of point M , which determines the external force applied to

point M ; it is assumed that the forces g applied to the rod of the system are perpendicular to the
axis of the rod.
(a,y) —work of load g=0q(M) on displacement y=y(M). If (q,y)=0, they say that the
load g is orthogonal to the form vy, or that the load q is applied at a generalized node of the form y .
—Cy — a linear operator that determines the internal forces acting on points of the system in
position y(M ) (including the reactions of elastic and rigid constraints belonging to the system that

connect it to the ground). The "-" sign reflects the usual property of elastic structures — to generate
reactions that counteract the deformation that caused them.
Ny — linear operator defining external forces acting along the axis of the corresponding rod

of the system. These forces form a system of couples acting on the elements of the system and
arising as a result of their turn at displacement y =y (M ). On segments of the system that do not

turn or bend at this displacement (y =const.), Ny = 0.

(Ny,v)=(Nwv,y) — work of forces of the system Ny, corresponding to configuration y, on

displacement v . In particular, for a rod of length 7, compressed by a unit axial force constant along
its length:

l
(Ny,v):J.y’(x)v’(x)dx. (1)
0

Here and below, the prime denotes the derivative with respect to the coordinate.

It is assumed that forces Ny do not cause tension anywhere, but there may be segments free
from compression, where Ny = 0. Therefore always (Ny, y) >0.

The equation:

(C-PN)y=0,
expresses the equilibrium conditions of a system under the action of systems of forces —Cy and
P-Ny, where P is a parameter called the compressive force. Its nontrivial solutions v,, v,, ...,
existing for a discrete set 0< K < P, <... of values of P, constitute a set of BMs, each of which v,
corresponds to its own value P, called CRF,

(C-PN)v; =0.

The forms ©; are determined up to a constant factor, which is chosen so that the
normalization conditions (ij,vj)zl are satisfied. In addition, the orthogonality relations also
hold:

=] = (Nvi,vj):O.
These relations make the forms v,, v,, ... convenient for constructing a basis in the space of

configurations of the system S, but in the general case, in particular at the presence of segments
free from compression, these forms are not sufficient to represent an arbitrary configuration as their
linear combination and they should be supplemented with forms w,, w,, ... in which all compressed

segments do not turn and for which Nw, =0.

If there are no internal hinges in the system and there is at least one external fastening, the
configuration of the system, compressed by force P, caused by an arbitrary transverse external load

q:q(M), with completeness and an appropriate choice of normalized forms w,, can be
represented in the form of an expansion:
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4,7
y=2(q,wj)wj+2%vj. ()
-
If the load q= q(M) is a concentrated shear force applied at a point with coordinate s and

directed towards positive y(x), the corresponding scalar representation of the form (2) takes the
form:

()= Sy (5)ee, ()4 2 2o (). ®

Perturbations of the CRFs at small shifts of a point support. If the system S® is formed from
S by introducing an elastic or absolutely rigid point hinge support at a point with coordinate s,

then, as was noted in [4, 7], the derivative of a simple CRF of the system s equal to P,
regardless of its number in the spectrum of CRF, is equal to:
P _, RY(s) @)
s (Ny,y)
where R is the magnitude of the reaction of the moving support, positive when it acts in the
direction opposite to the positive deflections y(x).

A multiple CRF corresponds to an infinite set of BMs, the dimension of which is equal to the
multiplicity of the CRF. Therefore, the expression in equation (4) loses its meaning due to

uncertainty y’(s). If in this case the support turns out to be in the node of each of the BMs of the

system S corresponding to P, and the multiplicity of P in S® remains the same as in S, then, as
follows from considerations of [7], P’ =0, and equation (4) remains valid, because when the system
S™ buckles under the action of force P along any of the corresponding forms R=0.

If the installation of a support in the node s, of each of the BMs v, of the system S

corresponding to its CRF equal to P, of multiplicity r (in S), r>1, led to the formation in S of
a new form vy corresponding to the same CRF (in this case R=0), equation (4) becomes
inapplicable because in this case, the shift of the support leads to the appearance of two different
simple CRFs P, and P,, B <P, <P, , the derivatives of which (one-sided) at s = s, are determined
by the relations ([7]):
' 2
Pb'+Pa'=2Ry—(S°), Pb'P;:—R—Zv;f(sO), (5)
(Ny.y) (Ny,y) 5=
where the notation has the same meaning as in equation (4), v,,(X), v,,(X), ...,7, (x) are

the BMs of the system S  corresponding to its CRF equal to PR,

00 (S0) = U (Sg) = -+ =7, (S5) =0.

Perturbations of the BMs corresponding to multiple CRFs. If, when installing a support of
appropriate rigidity in a node s, of the form v, (x) corresponding to the CRF P, its multiplicity
has increased, R") =P, a new BM appears, which was not in S and which, according to
equation (3) may be determined by the relation ([7]):

v (S
y0)=R| Ty (), (0 + 3 2, 39 ®
i P =R

where R is the magnitude of the reaction of the introduced support, positive when it acts in

the direction opposite to the positive deflections y(x). Note that in the expansion in equation (6)

there are no members containing the BMs vk(x) of the system S that respond to B,. The
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orthogonality condition (Ny, v, ) =0 follows from this.

When the support shifts from s, to s, the multiplicity of P, in S® decreases and two new
CRFs P, and P,, P, <R, <P, appears, the larger of which in accordance with equations (3) and (6)
corresponds to the BM:

-R ij(S)wj(X)+Zsj—(sF2 v; ( ka, )y (x

2k By a

which in the limit at s — s, takes the form:

ya ( P, zvkj Ukj (7)
where P, is the one-sided derivative of P, Wlth respect to s, calculated at s=s, from

equations (5), y(x) is unperturbed (before the support shift) BM of the system sY, determined by
equation (6).
The perturbed BM corresponding to the smaller CRF P, is determined similarly,

Yo (X )+— z 0y (S0) 04 (X (8)
b j=l

From (5), (7) and (8) the equality follows:
y;(so)+ Yo (So)zo'
which means that on a moving support the angles of slope of the rod axis for the forms vy, (x)
and vy, (x) at the same value of the support reaction are numerically equal, but opposite in

direction.
Note also that y, (x) and y,(x) from (7) and (8) satisfy the orthogonality condition

(Nya’ yb ) = 0 )
Forms y,(x) and y,(x) give an enough accurate representation of the BMs of the system

s® if s is close enough to S,- At s#s, CRFs B, and P, are simple and their derivatives must

satisfy equation (4), established for simple CRFs, i.e. following equalities must be satisfied:

) 65 s:so_ (Nyaaya), o 65 s=5, (Nybayb)
To verify the validity of the first of them, we note the validity of the following relations:

Ya(so) Z v (10)

a j=L
From equation (5) next relations follow:

S (s) =R Ry(s)=(w) EE

Pa’ 2
whence:
RY.(s,)=R +—lev )Pb'-lzrp“l—(Ny, y)P =(Ny, Y)P iy (11)
From equation (7) takl:lgjinto account orthogonality (Ny,vkj ) =0 it follows:
(NY. Yo)=(Ny, y)+ Pﬂ,zZv =(Ny,y)- (Ny,y)%=(Ny, y)P“I%a,P”'- (12)

Modern construction and architecture, 2025, no. 11, page 22-32



BUILDING STRUCTURES

Comparing equations (11) and (12), we get the first of the equalities:
2Ry, (s,) . 2Ry; () o
Tl pr, 0 o pr
(NY,.Y.) (NYs ¥s)
in full accordance with equation (4). The second one is established in the same way.
We will demonstrate the results obtained using examples.
Example 1. A rectilinear prismatic rod (see Fig. 1) of length 7, hinged at the ends on rigid

supports and compressed by a longitudinal force constant along the length, is supported by an
elastic hinged support in its middle, which is the node of the 2nd BM.

P

e 0,5/ Q%f Z?L
4 .

2
Fig. 1. Arod having a double main CRF at c=c, = 167;35]
. . . 16n°EJ . . .
With a support stiffness coefficient equal to c, = i where EJ is the bending stiffness
. . . An°EJ

of the rod that is constant along the length, its main CRF becomes double and equal to the 7

2nd CRF of a single-span rod. It corresponds to two linearly independent BMs, defined by the
equations ([10]):

1 (¢ . (2rX
U, (X)=—,/=sIn| — |, 13
()= 2 sin| 2] 13

. [ 2mX) 27X A . /
sin + . —, if x < —,
14 ¢/ | 167°EJ 2

= (14)

y(x)= {Sin[ZR(i_x)}Zn(Z—x)}_ £ ol ov<

/ 167°EJ " 2

The form v, (x) is shown in Fig. 2 a), y(x) —in Fig. 2b). In all figures, the distance from

the left end of the rod is plotted along a horizontal line and is indicated in fractions of 7. Vertically
3

at R=1.

in Fig. 2 b) ordinates y(x) are shown in fractions of

0 0.2 0.4 .6 0.8 1

*EJ

a) b)
Fig. 2. BMs of the rod shown in Fig. 1, corresponding to its main double CRF

Constant coefficients in equations (13) and (14) are determined by normalization conditions.
The form v, (x) satisfies the condition:
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l

(sz,vz):jvf(x)dx:l. (15)

0
The form y(x) corresponds to a reaction value of the intermediate support equal to 1. In this

case:

30
128 r*(EJ)"
The forms v, (x) and y(x) also satisfy the orthogonality condition:

(Ny.y)= [y (x)x=

Nyv2 Iy dx 0.

Due to symmetry of y(x) on the intermediate support y'(¢/2)=0 (see Fig.2b)), from
where, according to equation (5) equalities follow:
o __prIRE(2)] _[0h(4/2)] _167°E

o Ny J(Nyy) VB2

They correspond to two perturbed BMs:

10906+ 57 00 =y (5 L T e 1)

\/’£5/2
- y(x)_sﬁanJ % (x)= y(x)_16n3EJ

e (22

167°EJ /
The forms y, (x) and y, (x) are shown in Fig. 3 a) and 3 b) respectively.

0.25 0.25

a) b)

Fig. 3. Perturbed BMs of the rod shown in Fig. 1, corresponding to its main double CRF
when the support shifts in the limitat s > s, =4/2;a) -y, (x), b) - y, (X)

Example 2. A two-span rod (Fig. 4) of length 7, supported at the ends on hinged supports,
one of which is absolutely rigid and the other deformable, is compressed by a longitudinal force
constant along the length.

P

>
4

Fig. 4. A rod having a double main CRF at c=P,/(¢-a)
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It has a double main CRF equal to the 2nd CRF P, of a single-span rod supported at the ends
on absolutely rigid hinge supports, provided that the absolutely rigid intermediate support is located
in the node of the 2nd BM of this single-span rod, corresponding to P,, and the stiffness coefficient
of the end deformable support is equal to c= Pz/(z—a), where a is the coordinate of the

intermediate support, equal to the distance of the node of the 2nd BM of the single-span rod from
the rigid end support.

This CRF corresponds to two linearly independent BMs, one of which vz(x) is the BM of a
single-span rod supported at the ends on absolutely rigid hinged supports which corresponds to its
2nd CRF equal to P,, and the second is the semi-curved one ([2, 3, 9]) and is determined by the
equalities:

0, if x < a,

u(X):{ v,(X)- 0, (a)(x-a),if a <x </

The form u(x) for a prismatic rod of a constant bending stiffness is shown in Fig. 5 a),

(16)

where the ordinates are indicated in fractions of E\/g according to the definitions of
T

equations (13) and (16) and normalization of the form v, (x) by equation (15).

Fig. 5. BMs of the rod shown in Fig. 4 for a prismatic rod of a constant bending stiffness;
a) —semi-curved u(x), b) — y(x) orthogonal to v, (x)

Unlike the previous example, the forms v, (x) and u(x) are not orthogonal. Therefore, to

determine the perturbations of the CRFs and BMs, we form their linear combination:
y(x)=10,(x)+ru(x), (17)
which will be orthogonal to v, (x) at

In this case, as calculations show,

p
(Ny,y)=[y?(x)dx =270} (a)(£-a)— (1 +1).

0

The form y(x) for a constant bending stiffness is shown in Fig. 5 b) in the same units as
u(x) inFig. 5 a).

Since when the rod is buckled according to the form v, (x) , all support reactions are equal to
zero, when buckling according to the form y(x) they will be the same as when buckling according
to the form ku(x), in which the left end support is not loaded, and the two remaining reactions
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form a couple in which the reaction of the end support is equal to R(f) = cy(() , and the reaction of
the intermediate support is equal to:
R=R(a)=—cy(¢)=crv,(a)(/—a)=PAv,(a).
Moreover, since u'(a)=0, from equation (17) it follows that y'(a)=v,(a). This allows us

to write down the equations (5) in the form:
2

! ! 2q N’
R+P=T0 Pbpa:—q?, (18)
where g =Ruv, (a)=PBAvy (a), Y =(Ny,y).

From equation (18) we find:

1-v1+Y
q Y

2 1-V1+Y , ,
= Py (a)T , R/ =Prv}(a)

1++/1+Y
—Y .

The corresponding perturbed forms according to equations (7) and (8) are determined by the
equalities:

P’ =

a

Y, (%) =Y ()= (L V1Y o, (1) ¥ (%)= Y (x)+(VB+Y ~1), (x). (19)

In the case of a rod of a constant cross-section:

vz(x)zl\/zsin(%j, h=-2, Y=5,
m\2 l

and perturbed BMs y, (x) and y, (x) calculated according to equation (19) take the form shown in
Fig. 6 a) and 6 b) respectively.

I ! ! /—\ y | | | |
0 2 . 0.6 0.8 1 0 0.2 0.4 ! 0.8 I
4 4
a)

b)

Fig. 6. Perturbed BMs of the rod shown in Fig. 4, corresponding to its main double CRF
when the intermediate support is shifted in the limitat s —s, =//2; a) - y, (x), b) - y, (x)

All calculations in the examples are performed on the basis of known exact analytical
expressions for the influence functions of compressed prismatic rods with constant bending stiffness
along the length [10].

Conclusions. The results of the article allow, in addition to the perturbations of critical forces
caused by small displacement of supports, to obtain information about the appearing buckling forms
of rod systems, as well as to establish some of their geometric features. This information can be
used in solving various problems related to the design and operation of such systems.

The study made it possible to better understand and quantitatively estimate the influence of
changes in the position of constraints on the critical forces and forms of buckling of rod systems.
The use of the results presented in the article will make it possible to increase the efficiency of the
design and operation of engineering structures containing elements operating under conditions of
axial compression. It can be suggested that the ideas and results used in the article can be applied in
the future when solving more complex problems of control and optimization of the mechanical
characteristics of various engineering structures.
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ITPO 3BYPEHHS ®OPM BTPATH CTIMKOCTI CTPUKHEBUX CUCTEM, SKI
BIAMOBIIAIOTh KPATHUM KPUTUYHUM CUJIAM, IIPH 3MIHI TIOJIOKEHb
B’SI3EN

Bbexmaes C.41.,

s.bekshayev@gmail.com, ORCID: 0000-0002-5752-5321
Ooecwvra Oeporcasna akademisa OyOiGHUYMEa ma apximexkmypu
Byq. Jlinpixcona, 4, m. Oneca, 65029, Ykpaina

Anortania. CTaTTd NPUCBAYCHA MOCHIPKCHHIO BIUIMBY PO3TAIIyBaHHS OINOpP CTPHKHEBHUX
CHUCTEM, 110 MICTATH MO3/I0BKHBO CTUCHYTI €JIEMEHTH, Ha X KPUTHYHI CUJIU Ta BiAMOBIAHI hopMH
BTpaTu CTiikocTi. baraTto nmuTtanp, MOB'SI3aHUX 3 MPOEKTYBAHHSAM 1 €KCIUTyaTalli€l0 TaKUX CHUCTEM,
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30KpeMa 13 3a0e3MeUCeHHSIM 1XHbOI CTIMKOCTI, BUMAraroTh ypaxyBaHHS OCOOIMBOCTEH mux (opwm,
30KpeMa pO3TallyBaHHs iX BY3IiB, TOUYOK €KCTpeMyMiB Ta iH. OCOOMUBY CKIIAJHICTh MPEACTABIIIE
BUIAQJIOK KPaTHOI KPUTHYHOI CHJIH, 7S SIKO1 (hopMa BTpaTH CTIMKOCTI HE BU3HAYEHA OJHO3HAYHO,
OCKIUTBKM KpaTHIM KPUTHYHIN CHIII BIJIMOBiAa€ HECKIHUEHHA KUIbKICTh (popM BTpatu cTiliKocTi. Y
3ampoIOHOBaHIA poOOTI JUIsi BHUNAAKY 30cepekeHoi nedopMoBHOT ab0 aOCONMIOTHO KOPCTKOI
HIApHIPHOI OMOPH BUBYEHO, SIK MIPHU MAJIOMY 3CYBi ONOPHU 3 KPaTHOI KPUTUYHOI CHIIM yTBOPIOIOTHCS
JIBI TIPOCTI, a 3 HECKIHUEHHOI MHOKHHU ()OPM YTBOPIOIOTHCS JIBI OJHO3HAYHO BU3HAYCHI (HOPMHU.
[Ipy 1BOMY CYTTEBO BHUKOPUCTOBYIOTHCS AHANITUYHI Ta SAKICHI METOOM Teopii CTIHKOCTI
CTPWKHEBUX CHCTEM, 30KpeMa, BIJOMiI TEOpPEMH IpO BIUIMB HAKJIAJaHHS B'A3€il Ha IX KPUTUYHI
CWJIH, 2 TAKOX BCTAHOBJICHI PaHIIIe CITIBBITHOIICHHS, 110 BU3HAYAIOTh MMOXI1/IHI BiJI KpUTUYHUX CHII
[0 KOOpJAWHATaM, $KI BH3HAYAIOTh I[OJIO)KEHHS OMNOp, L0 MEPEeMINIyIOThCS. 3ampONOHOBAHO
aHAJIITHYHI BUPA3H, K1 J03BOJIIOTH OMMCATH 3HOB YTBOPEHI (OPMH NPH MaluX 3CyBax OMOPH B
TOH 4M 1HIIUHI OiK, 3 IKMX, 30KpeMa, BUIIJIUBAE, 10 Ha OTIOPI, 110 MEPEeMIIIYEThCS, KYTH HAXUITy OCi
CTPWXXHA JUIA IHMX (OpPM IpPU OJHOMY 1 TOMY K 3HAUEHHI peakiii OMOpH YMCENBHO PiBHI, aie
MPOTUJICKHI 3a HaNpsIMKOM. BHCHOBKM CTaTTi MpPOJEMOHCTPOBaHI Ha KOHKPETHUX MPHUKIAIaX
JIBOIIPOTOHOBUX MPHU3MATUYHUX CTPUXKHIB, CTHCHYTHUX MOCTIHHOIO MO JOBXHHI TO30BXXHBOIO
cwiol. B oIHOMY 3 HUX BapilO€ThCS MOJOXKEHHS MPOMDKHOI OMOpH, IO AePOpPMY€EThCS, MpU
abCOIIIOTHO KOPCTKHUX KpaifHixX oropax. B iHIIOMyY nepeMilry€eThest MPOMiXKHA a0COTIOTHO JKOPCTKA
OI0pa, KOJM OJHA 3 KpalHIX OMOp Mae CKIHYEHHY >KOPCTKiCTh. B 000X mpukiazax mnpu neBHOMY
3HAYEHHI KOPCTKOCTI JIe()OPMOBHOI OTIOPH OCHOBHA KPUTHYHA CHJIA CTA€ IBOKPATHOIO i CTPUIKCHD
MOXE BTpayaTH CTIHKICTh MO Oyab-fKiii 3 HECKIHYEHHOT MHOXXMHU KoHOirypamiit. [Ipsmi
00YMCIICHHS, BUKOHAHI JJIS MX BUIMAJIKIB, MIOKA3yIOTh, 110 3CYB MPOMDKHOI ONOPU MPHU3BOIUTH 10
e(eKTy, OMUCAHOI0 y CTaTTl, Ta MIATBEP/KYIOTH ii pe3yJbTaTH.

KarwouoBi cioBa: CTiiiKicTh, KpUTHYHA cWia, (opMa BTpaTH CTiliKocTi, 30ypeHHS, B’s3b,
3MiHa MOJIOKEHHS.
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