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Abstract. Mathematical modeling is currently the basis for approximate methods of
calculations and determination of the stress-strain state (SSS) of structures under temperature
effects. It allows numerical finite element (FE) methods to obtain valid solutions to many complex
problems in cases of force and temperature loads acting on statically indeterminate reinforced
concrete structures, including taking into account plastic deformations and non-stationary three-
dimensional temperature fields.

The article describes the main stages of explicit modeling of reinforced concrete protective
structures under power loads and thermal problem features, based on the capabilities of the LS-
DYNA software package. The algorithms of mathematical modeling with a detailed step-by-step
justification of the applied dependencies of the explicit method are described. It is indicated that the
correct choice of interaction criteria and substantiated models based on the analysis of the structure
allows obtaining adequate results of the numerical experiment, confirmed by other researchers.
Dependencies are given that allow calculating the function values at a future time step using already
known function values at the current step and its derivatives. The calculation of the FE node speeds
using the explicit method of integrating dynamic equations is performed using an expression that is
an explicit numerical method for solving the dynamic equations. A basic expression is given for
calculating the accelerations of FE nodes when performing approximation of time derivatives using
the finite difference method.

For a complete set of FE, the fundamental possible displacements of nodes, the generalized
equation of conservation of energy of a solid deformable body, which is discretely imposed on the
FE mesh, are taken into account.

For the case of temperature loads in fire mode, an approach to solving a thermal problem is
presented. It is shown that a substantiated methodology using elements of explicit and implicit
methods allows one to correctly solve the posed thermal problem, taking into account the nonlinear
deformation of the materials of the reinforced concrete protective structure and spatial temperature
fields from the external temperature load.

Key words: explicit integration method, fire load, hexahedral finite element, reinforced
concrete structures, thermal problem.

Introduction. The solution to the problem of determining the stress-strain state of reinforced
concrete protective structures under the influence of force and temperature loads, variable in time
(from fire and local heating by lasers, etc.) is impossible without the use of approximate numerical
methods. At the present stage, two classes of them are used: explicit and implicit.

The main difference between them is how the new value of the function at the next point is
calculated. Explicit methods are characterized by the calculation of new values of a function solely
through the known values of the function and its derivatives at previous points, ease of
implementation, which does not require solving systems of equations, and less stability for rigid
systems, that is, systems with different time scales. Therefore, explicit methods may require a very
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small integration step to ensure accuracy. The main one of this group is the Euler method. Such
methods are used to solve simple systems of differential equations.

Analysis of the latest research and publications. Recently, many software packages (LIRA,
LS-DYNA) have successfully implemented implicit methods for solving problems with dynamic
loads, including temperature loads from fire, seismic loads, etc. For this purpose, new finite
elements [1-3] and algorithms implemented in domestic and foreign computer programs are being
developed. In mathematical modeling of thermal problems using implicit methods, a new value of a
function is calculated from an equation that includes both known values of the function at previous
points and an unknown value at the next point. Such methods are much more complex to
implement, since they often require solving a system of nonlinear algebraic equations at each
integration step, but they allow non-stationary spatial temperature fields to be modeled with
sufficient accuracy [4]. In this case, a solution is obtained for rigid systems of differential equations,
for which the main criterion is to ensure process stability with lower accuracy. An example of the
implementation of both classes of methods under the action of temperature and force loads is the
LS-DYNA software package, which allows solving a large group of problems of contact interaction
of solid deforming bodies [5-7].

Objective of the work. Using the capabilities of the LS-DYNA software package, develop a
version of a substantiated mathematical model of a reinforced concrete protective structure to
determine its SSS when concrete with cracks and reinforcement beyond the yield point operate
under conditions of emergency force and temperature loads.

Research methodology. An example of the practical application of the capabilities of the
specified complex is the solution to the problem of determining the fire resistance limit of the wall
of a reinforced concrete storage facility for spent nuclear fuel. A numerical experiment was
conducted for the most dangerous cross-section of a precast reinforced concrete structure, the
concrete of which was modified with a complex additive Berament A2 [8], which reduces the
amount of free water in the pores and increases the protective properties of the material (Fig. 1).
Finite element modeling was performed for the fragment and the initial data and parameters of heat
exchange processes were specified.
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Fig. 1. Fragment of a reinforced concrete load-bearing wall of a protective structure:
a — the most dangerous cross-section of the wall; b — reinforcement diagram of the dangerous
Ccross-section

The selected size of the FE and their number ensure high performance of calculations without
reducing their accuracy. When specifying the external load, explicit integration methods were used,
and when specifying the fire load, a thermal problem was solved.

Results of the study. The LS-DYNA complex includes several resolvers with an explicit type
of integration over time. This method of mathematical modeling allows for the numerical solution
of differential equations or other mathematical models based on the calculation of function values at
individual points in time or space.

For the Euler method with one variable (y'=f(t, y)), the value of the function y at the next step
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(t+h) of integration is determined through the known values of the function at the previous step (t)
and its derivatives with respect to time and the function at this point according to the expression [9]:

Yn+1 = Yn + h-f(tn yn), Q)

where: yn+1 is the function value at the future time step; yn is the function value at the current time
step; h is the time step; tn is the time at the current time step; f(tn,yn) is the function value f at the
point (tn,yn), which is known.
The value of yn+1, at the next time step (tn+1 = ta + h), is calculated in four intermediate steps
k1, k2, ks and ks and is determined as follows:
calculation of ki:

klzh' f(tnYn)1 2
calculation of ko:
h k
K, =h-f(ta+—,yn+-1), 3
(th ) Yn 5 ) (3)
calculation of ka:
h k
k,=h-f(th+—,yn+-2), 4
(th ) Yn 5 ) (4)
calculation of ka:
k.=h-f(t,+h,y,+k,), (5)
final calculation:
yn+1=yn+é-(k1+2k2+2k3+k4), (6)

where: h is the time step, tn is the time at the current step, yn s the value of the function at the current
time step, f (t, y) is the function defining the differential equation, ki, kz, ks, ks are intermediate steps
that help in calculations.

The calculation of the velocities of the nodes of the FE using the explicit method of
integrating dynamic equations is performed using the expression [9-12], which is an explicit
numerical method for solving the equations of dynamics:

Y05 _ (un+1 _ un)/Atn+0.5 ML = " 4 ANHO5,,n+05, @
The displacements of the nodes FE are calculated using the expression:
Xn+1 _ XO n un+1. (8)

Calculation of the accelerations of the nodes of FE when performing the approximation of
time derivatives is the basic expression of the finite difference method:

Q= (Vn+0.5 —Vn_O'S)/Atn _, 05 _\,n-05 +Atnan’ ©
When using the expressions written above, equation (1) takes the form:
Ma"=F" F"=) (F—F"). (10)

! e=1

When solving a system of linear algebraic equations, the acceleration of nodes FE is
calculated by inverting the matrix M:
a"=M7F" (11)
The time step calculation at this stage is carried out using the Courant-Friedrichs-Lewy
number, calculated using the expression:

.
At < Atgpir = min é ’ (12)
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where: c. is the value obtained from the dependence: Ce =N Ee/pe ; le is the spatial step of the
applied FE mesh.

Mathematical models of dynamics and SSS of the structural system are implemented in the
calculation scheme, which takes into account the displacements of a rigid deformable body (RDB),
simultaneously with the motion of the deformable one from the time t = 0 to a given time t. In the
diagram, the RDB in the initial state is marked as Q0. In the initial position, the boundary surface of
the body is designated as I'0. At a given time t, the current position and geometric configuration of
the RDB is designated by Q with the boundary surface denoted by I'. During the period of motion
of a body with the initial configuration Q20 from the initial position to the position and configuration
Q, existing at the current time, a certain point, having the corresponding set of coordinates X in the
initial state and belonging to the region Q0, will move and be localized in the region Q0 with a new
set of coordinates x.

In order to describe the dynamics of the RDB interaction, the basic equation of motion (Fig.
2) taking into account a set of conservative laws of dynamics is adopted in accordance with the
works of Belichko, Bailey, etc. [1-4]. Taking into account the accepted notations, the equation of
the impulse balance, adopted as the basic one, has the form:

ojji+p-fi=p-X, (13)
where: aij, i is the Cauchy stress tensor of RDB at a given point; p — is the density of the material of

RDB at a given point; p-Ti are the external forces applied to the body at a given point of RDB;

' is the acceleration of a given point RDB.
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Fig.2. Initial and current position of a solid body deformed during motion

The equation of conservation of RDB mass is written as a dependence:
p-det(J)=pg, (14)

where: po is the density of the material in the initial state at a given RDB point; det(J) is the
determinant of the predicted tangent matrix.
The equation for the energy balance law is written in terms of kinetic energy and potential

internal energy, the sum of which is equal to the sum of the work of external forces.

pint _ pkin _ pext _pheat (15)
Kinetic energy can be determined by the expression:
in d
pk =o.5ajpv-vdg. (16)
Q

Internal energy is calculated by the relationship:
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PEr [y phd2 + v-tdr
) .

According to the works [1-4], in the absence of a source of thermal energy, the form of the
energy conservation equation is as follows:

(17)

iJ',ovvint +(0.5pv-v)dQ = Iv-pbdQ+ .|.v~td1“. (18)
dt O i
The energy balance equation taking into account the deformation of RDB takes the form:
- int oV, aVj
=0.50j;| — +—
PW ij |:8XJ aXi :|‘ (19)

The limiting conditions for the limitation of the motion of RDB It are written in the form:
oijnj =ti(t), (20)
where nj is the normal to the limiting surface of RDB, which is necessarily directed outward.

To set the limit conditions for the deformation parameters on the boundary surface of RDB,
we write the expression:

Xi(Xt)=%(t) (21)
In contact interaction between RDB, we write down the given boundary conditions:
(Gij+ _Jij_) n;=0. (22)

For bodies interacting with each other, their current state on virtual displacements ox; can be
written in the form of a work balance equation:

[lo s +0y;-p f]sda+ [logn, - t]axdr+j o7 —o; ) n,exdr =0.
Q Ty

Expression (18) takes on its final form [1-4] after wrltlng the sum of the virtual values of
work, which is equivalent to zero, and carrying out the appropriate transformations:

IIO Xié‘xidQ-l-J-O'ij'jé‘XidQ I,OféXdQ It&xdl“ J.t §X,dF 0
Q Q Iy Ie .

(23)

(24)

The finite element approximation of the main equations of dynamic interaction is
implemented using a dependence that describes the interpolation process within the internal limits
of the FE space of parameter distributions in the following form:

X (X,t) =% (X(&,m.0)t Z¢ EmEX(L). (25)

where m is the number of nodes corresponding to the type and shape of FE; ¢ is the shape function
in parametric form (parameters & 7, £); xi is the current coordinate of the FE node on the
corresponding axis.

For virtual displacements of a mechanical system for FE, the potential energy is determined
from the equation:

M= [ p (OFdQ+ ja,, dQ- [p fiofdQ- [tofdr
Q. Qe Qe I, ;

=t S

For the complete set of FE [2], the principle of possible displacements is taken into account.
In this case, the general equation of conservation of energy of the RDB, discretized onto the FE
mesh, is written by the expression:

(26)

where
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en
Y| [p %@fdQ+ [ojdfd- [p fidfdQ- [tdfdr (=0 27)
e=1 Q, Q. Q. T, .
In matrix form, expression (24) takes the following form:
Y| [PN'NadQ+ [BTe d2- [pN'b d2— [Nt dr [=0, (28)
e=l| q, Q, Q, T,

where: N is the matrix of parametric interpolation functions corresponding to the shape and type of
the FE; is the stiffness matrix; o is the stress vector; a. — is the acceleration vector of the FE nodes;
b is the loading vector; t is the traction force vector..

Eight-node FE massive hexahedral type SOLID (Fig. 3) are adopted for modeling the
behavior of reinforced concrete structures from the PC base. The equation for determining the
coordinates of the nodes of form (26) for a given FE has the form:

8 .
X (Xt)=%(X(Em.8)t)= "2 4;(Em.C X (1) 29)
j=1 ’
where g is the parametric function of the form for the j-th node of the FE of a given type:
¢j =0.125(1+ & 1+ J1+ <25 ), (30)
X; X3
Node| ¢ n ¢
1 o DS |
2 1 -1 -
3 1 1 -1
4 -1 1 -1
5 S 1
6 1 -1 1
7 1 1 1
8 -1 1 1

Fig. 3. Geometry of a hexahedral FE of the SOLID type with eight nodes

Parameters &, 7, {j are adopted in accordance with the calculation scheme.
The interpolation matrix for this type of FE has the following form:

# 0 0 ¢ 0O --- 0 O
N(E7.¢)=|0 ¢ 0 0 ¢ - ¢ O (31)
0O 0 0O O - 0 &
The expression for the stress vector is written as: .
o= (5 x Oy Oz Txy Tyz Tx )T. (32)

This approach allows taking into account the plastic deformation of the power component of
thermal and power loads. To obtain a complete picture of the SSS of a reinforced concrete
protective structure, a heat engineering problem is solved.

Method for solving the thermal problem. To solve the problem of temperature distribution of
parts of structural systems under the influence of standard fire temperature conditions, a non-
stationary differential equation of thermal conductivity is used in the form:
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where: ¢(0) is the specific heat capacity of concrete, depending on the temperature 8 ; A6 is the
thermal conductivity coefficient of concrete, depending on the temperature &; o(6) is the density,
depending on the temperature 6.
Approximation of the differential heat conduction equation using the FE method is performed
using the dependence [5, 13-16]:
[Ce] {6e} + [Ke] {0e} = {Qe}. (34)

he components of the approximation equation are determined by the following dependencies:

Heat capacity matrix of the FE: [Ce] = p-Cp I {N}dV.
\

Thermal conductivity matrix of the FE: [Ke] = J [B]"[D] [B] dV.
\

Temperature interpolation matrix in the FE volume: [B] = {L}{N} 6.
Average temperature in the volume of the FE: 8= {N}T {0e}.
Vector of temperature indicators in the nodes of the FE: {0Oe}.

A 0

0
[Dl=|0 4 0
Matrix of thermal conductivity coefficients: 0 4 .

0
0
Vector differential operator: {L} = {ax 6y 62}

The matrix of heat flows on the faces of the FE: {Qe} = qw J. {N}ds.
S

Vector operator of interpolation of parameters in the volume of the FE: {N}.

To approximate the non-stationary differential equation of heat conductivity (34) for
determining temperature indicators, a system of non-linear algebraic equations is used, which are
written in matrix form as the expression:

[KI{0e} = {Qe}, (35)
ne: [K] is the matrix of equivalent thermal conductivity, depending on all thermophysical
characteristics: specific heat capacity, thermal conductivity coefficient and density of materials of
parts of structural systems.

Then the system of algebraic nonlinear equations (35) in the most general form:

PO} = {Qe}, (36)

where: {P(6)}is a vector that determines the conditions of internal heat flows in the nodes of the FE
and is written according to the values of the heat flux density on the faces of the FE.

The root systems of algebraic nonlinear equations (35) are calculated by iterative procedures
of the Newton-Raphson method [2, 3, 5, 10, 13-16]. The purpose of performing these operations is
to minimize errors and violations. Symbolically, this algorithm can be represented as follows:

{®} = {Qe} — {P(9} — {0}. @37)

The implementation of the Newton-Raphson method becomes possible when using a
truncated Taylor series with a permanent calculation of the error vector remaining in the remainder.
This method of implementation allows solving linear algebraic systems of equations to obtain a
numerical value at a given iteration step. Under these conditions, the system of equations (37) is
written as a matrix equation:

[KQ‘”]{AG(J)} = {Q(‘)}— {P(‘)}_ (38)
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In compliance with the method described above, we perform equilibrium iterations (i=1, 2, 3,
...). The result of performing these mathematical operations are new temperature values at the
current step, which is achieved by calculating in accordance with the dependence:

B0} = o)+ {a00} (39

The process of performing iterations continues until an acceptable convergence is achieved,
meeting the requirements of the established accuracy of the results. Equation (38) contains the
coefficients of the tangent matrix [Kr]. The data are calculated using the expression:

[k$2]= (@L | (40)

d{6}

To write the vector {®} as a truncated Taylor series, the expression below is applicable:

@)= @ }+ K fao®} (41)

i i i-1

where: {Ae()}: {9( )}+ {9( )} is the temperature increment vector for further iteration.

Equation (40) contains {Q®}, which is a vector of heat flux values in the FE nodes, which are
calculated by overwriting the new values of the external heat flux vector. The latter is set by adding
the corresponding temperature increment determined by the specified fire temperature regime and
the specified heat exchange coefficients {Qon}. When using these data, the following components
are updated: the equivalent thermal conductivity matrix [K], which depends on the temperatures
determined at the previous integration step; the equivalent vector of internal heat flux values at the
FE nodes {P(6)},obtained by updating the equivalent thermal conductivity matrix. The parameters
are updated by numerical integration of the vector over time using the Euler method according to

the dependence:
{en+1}_ {en } = Atn (1_ g){en }+ Atng{én+1} (42)

where: Atn is the integration step over time;
¢ is the Euler exponent for the selected integration scheme (the Crank-Nicholson scheme), equal
to 0.5.
The matrix of equivalent thermal conductivity [K] is expressed, taking into account the
application of this scheme, by the dependence:

K]- rleJrlk.]

(43)

To update the vector of boundary heat fluxes {Q(6&)}according to the Crank-Nicholson
scheme, the following dependence is used:

{an»:{oe}ﬁ%ﬂce]{[mn}—[&]{en}

When setting the boundary value problem of heat conductivity, the third-order limit
conditions and the standard fire temperature regime were used [17, 18]. Based on the results of the
numerical experiment on heating a reinforced concrete wall for 180 minutes under the standard fire
temperature conditions, the results of temperature distribution in the wall of the protective structure
were obtained. Thus, the fire resistance limits of the reinforced concrete wall of the storage facility
accepted for the research were determined.

Regularities of changes in the fire resistance limit of a reinforced concrete wall depending on
the loading and mass fraction of the Berament A2 additive were established. The graphs identified
patterns are given at Fig.4. The graphs of the identified patterns are presented in Fig. 4. They show
that the patterns expressing the dependence of the fire resistance limit on the mass fraction of the
Berament A2 additive and the load level are linear.

(44)

.
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Fig. 4. Graphs of the dependence of the fire resistance limit of a reinforced concrete wall on:
a — load factor; b — mass fraction of the additive to concrete Berament A2

In this case, the dependence of the fire resistance limit of a reinforced concrete wall on the
mass fraction of the Berament A2 additive is proportional, and the dependence of the fire resistance
limit of a reinforced concrete slab on the load level is inversely proportional.

Scientific novelty and practical value. Developed on the basis of the capabilities of the LS-
DYNA software package and substantiated mathematical models and algorithms for taking into
account the features of the action of emergency thermal power loads on reinforced concrete
protective structures, models of the operation of reinforced concrete components with plastic
deformations in the reinforcement and cracks in the concrete under the action of such loads allow us
to determine the stress-strain state of the structure until the plastic state is reached.

As a result of the experiment, it was established that the fire resistance limit for the boundary
state of the thermal insulation capacity does not occur during the established time, and the fire
resistance limit for the bearing capacity at a load level of 0.4Qmax for a reinforced concrete wall
was 276 min. The regularities of the dependence of the fire resistance limit of a reinforced concrete
wall on the load level and the mass fraction of the Berament A2 additive were revealed, which are
linear in nature, and its fire resistance increases with an increase in the mass fraction of the additive
from 0 to 2.4%.

Conclusions. The above-stated substantiated methodology using explicit and elements of
implicit methods allowed us to correctly solve the problem, taking into account the nonlinear
deformation of reinforced concrete structure materials and spatial temperature fields from external
temperature load. This approach allows simulating emergency dynamic temperature and force loads
on protective structures, such as a drone strike followed by an explosion and others.
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TEMIIEpaTypHHUX BIUTMBaX. BOHO 03BoJsie uncenbHUMH MeToaamH ckiHdeHHuX enemeHTiB (CE)
OTpUMaTH OOIPYHTOBaHI pPO3B’SI3KM 0araTbOX CKJIAQAHMX 3a7ad y BHUMNAAKax il CHIOBHX Ta
TEeMITIepaTypHUX HaBaHTa)XCHb HA CTATUYHO HEBU3HAYCHI 3a11300€TOHHI KOHCTPYKIIii, B TOMY YHCII
3 BpaXxyBaHHsM IUIaCTUYHMX JAedopMariiii Ta HecTallioHapHUX TPUBUMIPHHUX TeMIIEPATypHUX IOJIiB.
B cTatTi onrcaHi OCHOBHI €Tamy MOJICIIOBAaHHS SBHUM METOIOM 3113006 TOHHUX 3aXHUCHUX CIIOPYI
IIPU CUJIOBUX HABAHTAKEHHSAX Ta OCOOJIMBOCTI TEIUIOBOI 3a/1adi, siKi 0a3yl0TbCs HAa MOKIMBOCTSIX
nporpamaoro komruiekcy LS-DYNA. OmnmcaHo anropuTMH MaTeMaTHYHOTO MOJCTIOBAHHS 3
JIeTaJbHUM MOKPOKOBHM OOTPYHTYBaHHSM 3aCTOCOBAHHMX 3aJIE)KHOCTEH SBHOTO MeTony. BkasaHo,
10 TpaBWIBHUN BHUOIp KpUTEpiiB B3aeMOii Ta OOIPYHTOBAaHMX MOJENIECH Ha IiJCTaBl aHAI3y
KOHCTPYKIIi [103BOJISiE OTPUMATH aJIeKBAaTHI pPE3yJNbTaTH YHCEIBHOTO EKCIIEPUMEHTY, SKi
MIITBEP/UKEHI IHIIMMH JOCTiAHUKaMHu. HaBenmeHi 3aieXHOCTI, SKI JI03BOJISIOTH OOYMCITIOBATH
3Ha4YeHHs (YyHKILII Ha MalOyTHHOMY KpPOLli Yacy 3 BUKOPUCTAHHSAM B)K€ BIIOMHUX 3HA4€Hb (PYHKIIIi
Ha MOTOYHOMY Kpomi Ta ii moximHux. Po3paxyHok mBuakocteil By3miB CE mnpu BuUKOpUCTaHHI
SIBHOTO METOJly IHTE€TpyBaHHS JUHAMIYHHUX PIBHSIHb BUKOHYETHCS 13 3aCTOCYBAHHSM BUPA3y, SIKUH €
SBHAUM YHUCIIOBUM METOJOM pPO3B’S3Ky piBHSAHb JIuHaMmiku. HaBemeHo 0a30Buii Bupa3 uis
po3paxyHKy mpuckopeHb By3iniB CE 3a yMOB BHKOHaHHS ampoKCHMAIlii IMOXiJTHUX 32 YacoM
METOJIOM KIHIIEBHX Pi3HHIIb.

Hns moBHoro Habopy CE BpaxoBaHO NPUHIMUIOBI MOXIIMBI TEpPEMIIIEHHS BY3IiB,
y3arajbHEeHE pIBHSIHHA 30epexeHHs eHeprii TBepaoro aedopMiBHOrO Tina, SKe TUCKPETHO
Haxmanene Ha citky CE.

Jns Bumanky aii TeMIiepaTypHHUX HaBaHTAKEHb B PEKHMMI TOXKEKI HABEACHO MIiAXIT 110
BUPILICHHS TEIUIOBO1 3a1a4i. [lokazaHo, 1o BUKIIaJeHa OOIPYHTOBaHA METOMKA 3 BUKOPUCTAHHSIM
€JIEMEHTIB SBHOTO Ta HESIBHOI'O METOJIB JI03BOJISIE KOPEKTHO PO3B’S3aTH IOCTABIIEHY TEIJIOBY
3alady 3 BpaxyBaHHSIM HENIHIMHOTO JedOopMyBaHHS MaTepiamiB 3alli300€TOHHOI 3aXUCHOI
KOHCTPYKIIi Ta NPOCTOPOBUX TEMIIEPATypHHX TIOJIIB BiJ 30BHIIIHBOTO TEMIIEPATYpPHOTO
HaBaHTAXCHHSI.

Kawu4oBi cjoBa: sBHHH METOJIl IHTEIPYBaHHs, MOKEKHI HABAHTAXXCHHS, T'eKcaeIpaabHHIA
CKIHYEHHHH eTIEeMEHT, 3al1i300€TOHH1 KOHCTPYKIIii, TETJIOBa 3a/1a4a.
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