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Abstract. The article is devoted to the urgent problem of predicting the durability of building
materials and structures exposed to complex multifactorial loads, including mechanical, thermal,
seismic, and corrosive effects. Current trends in construction, especially in areas with high risks of
military damage and natural disasters, require scientifically grounded methodologies for assessing
the performance of materials under real operating conditions. The study presents a comprehensive
analysis of numerical modeling methods, with a particular focus on the finite element method (FEM).
This approach enables detailed reproduction of the stress—strain state and makes it possible to account
for nonlinear interactions between different types of loads, which is essential for accurate predictions
of material service life. Special attention is paid to algorithms that integrate mechanical, seismic, and
thermal effects into a unified model, as well as the application of combined methods, including the
boundary element method, the Monte Carlo method, and finite differences. The proposed numerical
schemes were validated against experimental data, confirming high accuracy with deviations not
exceeding a few percent. An additional innovative aspect of the research lies in the integration of
classical numerical methods with machine learning technologies, particularly deep neural networks,
which allow the consideration of complex nonlinear degradation patterns of materials over time. The
study also emphasizes the integration of numerical models with monitoring systems based on IoT
sensors. Such an approach ensures real-time dynamic control of the technical state of building
structures and enables the timely identification of critical deviations. It has been demonstrated that
the application of these algorithms not only improves the accuracy of residual life predictions but also
significantly reduces costs by implementing resource-saving restoration technologies. The
conclusions outline future research directions, including the extension of numerical modeling
methodologies for novel high-performance materials, the advancement of machine learning
techniques, and the creation of fully automated systems for monitoring and predicting the technical
state of building structures.

Keywords: durability prediction, complex loads, finite element method, machine learning,
neural networks, resource-efficient technologies.

Introduction. Building structures are constantly exposed to complex and dynamically
changing external loads, including seismic, wind, static, thermal, and corrosion factors. This problem
is particularly arise in the context of the restoration of buildings damaged as a result of military
operations, when structures undergo additional damage and material degradation, which significantly
complicates their assessment and prediction of further operation [1, 9]. Traditional analysis methods,
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based on separate consideration of individual types of loads, do not allow for effective consideration
of their nonlinear interaction, which may lead to an underestimation of the destruction risks.

The solution to this problem is the use of modern complex numerical methods, in particular the
finite element method and boundary element method, which allow integrating different types of loads
into a single model. This significantly increases the accuracy of predicting the condition of structures,
which is especially important for ensuring the safety and durability of buildings in areas with high
seismic activity, aggressive environmental conditions, and in situations associated with military
destruction [5, 10].

The integration of numerical models with Internet of Things (loT) technologies and sensor
monitoring systems allows real-time information on the condition of structures and immediate
response to potential threats, which is key to making timely decisions on repair and strengthening.
The application of these technologies also contributes to the development of new, resource-saving
structural solutions that optimize material costs and restoration work.

Thus, the development and implementation of modern numerical methods for modeling complex
loads is a critically important task for increasing the reliability, safety, and durability of building
structures in conditions where the requirements for their strength and stability are constantly increasing.

Analysis of recent research and publications. Modern scientific literature pays significant
attention to the use of numerical methods and algorithms for assessing and predicting the durability
of building materials and structures under the influence of complex loads, which is due to the
increasing requirements for the safety and stability of structures.

One of the leading directions of modern research is numerical modeling of the influence of
corrosion on the structural reliability of reinforced concrete elements. In particular, in [9] the authors
performed a detailed analysis using the finite element method (FEM) to predict the bearing capacity
of reinforced concrete structures reinforced with carbon fiber reinforced polymer (CFRP) meshes
with composite cementitious materials. The study took into account the corrosion of reinforcement
and its effect on the strength properties of concrete and reinforcement. The authors use the following
relationship to estimate the effective cross-section of reinforcement after corrosion:

A\eff = A)(l_pc)’ (l)
where Aer — effective cross-section after corrosion; Ao — initial cross-section; pc — degree of
corrosion damage.

In another important study [9], the authors used numerical models to analyze the seismic
vulnerability of structures after large earthquakes. They assessed the risks to buildings, taking into
account structural features, ground motion, and weighting factors of different risk factors. The
empirical and coded seismic vulnerability curves developed by the authors demonstrate high accuracy
in estimating structural behavior, especially for steel and reinforced concrete structures. The paper
proposes an approach to integrating risk factors:

(2)

\ :Zn:WiFi,
i=1

where V — overall vulnerability assessment; wi — risk factor weights; Fi — the importance of a
single risk factor.

Also, in [1], numerical models for assessing the impact of seismic loads using a multifactorial
approach that takes into account both code and empirical approaches to create building vulnerability
curves were investigated. The authors emphasize that the use of such curves is more effective
compared to traditional methods, allowing for a better assessment of the risks of damage and
destruction of structures.

Methods for predicting the behavior of structures under complex loads are also considered in [5].
The authors use numerical algorithms for modeling static and dynamic loads, where differential
equations of motion in the form are solved:

[M]Ui+[Clu+[K]u = F(t), 3)
where M, C, K — respectively the mass, damping and stiffness matrix; u,u,i — vectors of
displacements, velocities and accelerations; F(t) — vector of time-varying loads. The obtained results
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of numerical calculations were confirmed by experimental studies, which confirmed the accuracy of
the modeling [5].

Numerical models based on the variation approach of the theory of plasticity were used to
analyze the durability of masonry under diagonal stresses. The authors [7] investigate the behavior of
brickwork under diagonal tension, providing strength criteria and formulas for assessing the condition
of masonry:

Gt — Fmax , (4)
Acosé

where o — diagonal tension; F — load force; A — cross-sectional area, and 8 — angle of loading
relative to the horizontal. The study demonstrates high accuracy of numerical calculations for
predicting the strength and durability of masonry.

The issue of durability of repaired reinforced concrete structures in corrosive environments is
highlighted in the study [4]. It considers the assessment of the effectiveness of repair materials, where
the prediction of degradation is carried out using models based on machine learning. The authors
demonstrate that the combination of numerical modeling with neural network algorithms allows to
significantly improving the accuracy of predictions and timely plan repair measures [12].

Thus, the analysis of recent studies shows that the integrated use of numerical methods
integrated with modern monitoring and machine learning technologies is a promising direction for
accurate prediction of the durability of building materials and structures under complex operational
loads. This allows significantly increasing the effectiveness of construction measures aimed at
protecting and restoring structures, especially in situations associated with the destructive influence
of external factors.

Aim and objectives. The purpose of this study is to develop, adapt and further improve modern
numerical methods and algorithms for predicting the durability of building materials under the
influence of complex loads, including mechanical, seismic, corrosion and thermal factors. The
complex and simultaneous effects of these loads can significantly worsen the strength and operational
characteristics of building structures, especially in areas with an increased risk of man-made and
natural disasters. In this regard, there is a need to create accurate predictive models and algorithms
that can take into account nonlinear interactions of various types of loads and provide reliable
forecasts of the durability of materials.

The objectives of the study are:

e analysis and systematization of modern numerical methods for modeling the behavior of
building structures;

« improving finite element method (FEM) algorithms and other effective numerical approaches
for more accurate prediction of structural durability;

o development of mathematical models that allow integrating heterogeneous factors
(mechanical, thermal, seismic, corrosion) into a single comprehensive forecasting model;

« experimental validation of developed numerical models using real data and operating
scenarios;

« development of recommendations for the practical implementation of numerical algorithms
in automatic monitoring systems for building structures;

« assessing the effectiveness of integrating numerical models with machine learning methods
to improve the accuracy of predictions of the durability of building structures.

Achieving these goals will allow us to create scientifically sound methods for predicting the
residual resource and optimizing repair measures, which will ensure the durability and safety of building
structures in operating conditions with a high risk of damage.

Materials and research methodology. The work uses a comprehensive approach to the study
of numerical methods and algorithms for predicting the durability of building materials and structures
exposed to complex combined loads. Typical reinforced concrete and brick structures typical of civil
and industrial construction were selected as the objects of the study [14]. The study is based on the
application of numerical methods, such as the finite element method (FEM), the boundary element
method (BEM), as well as machine learning methods for analyzing large amounts of data on material
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degradation. A comprehensive approach to the use of numerical models, combined with modern
machine learning methods, allows significantly increasing the accuracy and reliability of predicting
the durability of building structures, which is confirmed by validation on experimental data [15].

Research results. The development of numerical methods for predicting the durability of building
materials under complex loadings is a key task of modern engineering practice. Taking into account
complex mechanical, seismic, temperature and corrosion effects requires the development of accurate
mathematical models that can predict the behavior of materials over a long operational period [8].

Modern approaches are based on the use of numerical models that allow assessing the behavior
of materials and structures under various operating conditions, including emergency and post-
emergency scenarios.

The main numerical methods used to predict the durability of building structures:

* Finite Element Method (FEM).

* Boundary Element Method (BEM).

* Monte Carlo Method.

* Finite Difference Method.

The use of these methods allows for multifactor analysis of structures and assessment of their
residual bearing capacity after exposure to destructive factors.

The durability of a building material is determined by its ability to withstand accumulated damage
and its residual load-bearing capacity. This relationship can be represented by the equation [2]:

D(t) = Dy + [ (1), T().C(1), S(t) ), (5)

D(t) — degree of material degradation at a point in time t; Do — initial level of damage; o(t) —
mechanical load; T(t) — temperature effect; C(t) — corrosion processes; S(t) — seismic loads.

Thus, the durability of a building material depends on the cumulative effect of loads throughout
its entire period of operation.

Basic numerical prediction methods. The finite element method (FEM) is the main approach for
numerical analysis of the strength and durability of materials. It allows you to break the structure into
small elements, for each of which the equation of mechanical equilibrium is solved [12]:

[KJu=F, (6)

K — structural stiffness matrix; u — node displacement vector; F — vector of external loads.

FEM is used to assess the stress-strain state of materials, especially when analyzing reinforced
concrete structures damaged by seismic or wind impacts.

The Boundary Element Method (BEM) is an alternative to FEM and is used to analyze complex
boundary conditions of structures, such as the interaction of concrete and reinforcement with partial
loss of bearing capacity. The basic equation of this method is [9]:

[B(x)]a=D(x) Y

B(x) — deformation transformation matrix; q — displacement vector; D(x) — vector of internal
forces.

The Monte Carlo method is used for stochastic simulations where material parameters may vary
due to random factors such as corrosion, temperature cycling, structural inhomogeneities. It is based
on numerous iterations to obtain a probability distribution of the material's strength.

The probability of the failure is:

N, (8)

Pt — probability of the failure; Nf — number of cases where limit loads were exceeded; N — total
number of simulations.
The finite difference method is used to model the diffusion of corrosive particles in concrete

structures. It allows predicting the rate of penetration of aggressive substances into concrete:
oC _poC ©)

ot ox?
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C — concentration of corrosive agents; D — diffusion coefficient; x — coordinate in the material,
t —time.

The combined use of numerical methods provides accurate prediction of the durability of
building structures. The finite element method is the most effective approach for modeling the
strength of structures. The Monte Carlo and finite difference methods allow assessing the risks of
corrosion and temperature loads [6].

The impact of repairs on the durability of structures. The study [2] emphasizes the importance of
correctly selected and implemented repair technologies to ensure the long-term operation of building
structures. The main result of this study is a mathematical model that describes the relationship between
the quality of repair work and the predicted service life of restored building elements. To assess the
impact of repairs on the durability of structures, the authors developed a special probability distribution
function:

P(t)=1-¢*, (10)

P(t) — probability of maintaining the operational characteristics of the material after repair over
time t; A — degradation coefficient, which depends on the quality of the repair, operating conditions
and the type of materials used during the restoration of the structure.

According to the results obtained, the degradation coefficient (A) varies significantly depending
on the selected methods and the quality of the repair. The study found that the use of high-strength
materials and strict adherence to the repair processes can provide significantly lower values — of the
degradation coefficient, and, accordingly, greater durability of structures [3].

The distribution function can be written as follows:

P(t) =1—e M, (11)

Zm — coefficient characterizing the quality of materials used for repairs;

Aq — coefficient depending on the quality of repair work;

Ae — coefficient related to operating conditions after repair.

The values of these coefficients, determined experimentally, are given in Table 1.

Table 1 — Degradation coefficients depending on the quality of repair

oty |yt et | g
Low 0.12 0.08 0.09
Medium 0.08 0.06 0.05
High 0.03 0.02 0.01

Table 1 clearly shows that high-quality repair work using appropriate materials and taking into
account operating conditions can reduce the total degradation coefficient to a value of A = 0.06 1/
year, which ensures a projected period of operation of repaired structures of up to 15-20 years,
confirming the high effectiveness of such measures.

The graph in Figure 1 shows the dependence of the probability of maintaining the strength of
building structures after repair on the time of operation at different levels of repair work quality. It is
obvious that the lower the degradation coefficient A (which is achieved due to better quality of
materials, work performance and favorable operating conditions), the slower the serviceability of the
structure decreases over time [11].

In particular, with high repair quality (A = 0.06), even after 20 years, the probability of
maintaining the strength of the structure remains about 70%, which indicates the effectiveness of the
applied repair technologies. At the same time, with average repair quality (A = 0.15), the probability
of strength after 20 years drops to 5%, and with low quality (A = 0.36), the strength is almost
completely lost in 5-7 years (the probability exceeds 90%).
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Fig. 1. Curves of the probability of maintaining strength after repair P on time t

The graph clearly confirms the critical importance of high-quality repairs to ensure long-term
operation of structures, allowing to clearly assess the benefits of resource costs for high-quality
restoration technologies. The results of the study indicate the importance of quality control of repair
work, the correct choice of materials and technologies to achieve high durability of building structures.
The use of the presented numerical models and forecasting algorithms allows ensuring the proper level
of operational properties and minimize the costs of repeated repairs [13].

Numerical modeling of temperature effects. Building materials are subject to temperature
changes, which can cause their thermal deformation and change in mechanical properties.
Temperature loads are especially critical for reinforced concrete and steel structures, as they can lead
to uneven expansion of materials, the formation of internal stresses and microcracks.

For numerical modeling of temperature effects, the thermal expansion equation is used:

T, = AT, (12)

eth — thermal deformation (elongation of the material); o — coefficient of thermal expansion of
the material, 1/°C; AT — temperature change (°C).

This dependence allows us to estimate how much the linear dimensions of building materials
change with temperature changes.

Prolonged exposure to high temperatures causes changes in the mechanical properties of
building materials. For concrete and steel, these changes are largely determined by the temperature
range and heating rate.

Research [5] shows that with increasing temperature, there is a decrease in the strength of
concrete due to dehydration of cement stone. For numerical modeling of this effect, the equation of
the dependence of strength on temperature is used:

o = O'Oe’kT, (13)
ot — material strength at temperature T; oo — initial strength at 20°C; k — exponential coefficient
of strength degradation; T — temperature (°C).

Reinforced concrete has two main temperature factors:

o Expansion of the concrete matrix — concrete expands when heated, which can cause
additional internal stresses.

¢ Reinforcement expansion — Steel reinforcement has a higher coefficient of thermal
expansion than concrete, which results in tensile stresses in the concrete.

Thermomechanical stress in reinforced concrete is determined by the equation:

Oy = E “Tin (14)
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oth — thermal stress; E — modulus of elasticity of the material; e — thermal expansion.

Thermal expansion of concrete is an important physical and mechanical parameter that affects
the durability and integrity of building structures. Studies show that with an increase in temperature
from 20°C to 80°C, the relative expansion of the material increases within 0.02%-0.08%. This
dependence is linear, which indicates a proportionality between the change in temperature and the
magnitude of deformation. When the temperature increases, the expansion of cement stone and fillers
occurs, which causes an increase in the volume of concrete. However, due to different coefficients of
thermal expansion of its components, internal stresses may arise that can negatively affect the strength
of the material. In massive structures, especially with sudden temperature changes, such deformations
can cause the appearance of microcracks and accelerate the process of material degradation.

The study [6] proposes to use the finite element method (FEM) for numerical analysis of
thermal effects on materials. The basic equation of thermal conductivity in building materials is:

oT 15
pCp E = kva, ( )

p — material density; cp — heat capacity; k — thermal conductivity coefficient; T — temperature at
a given point in the material. Solving this equation allows us to estimate how the temperature in a
building structure changes over time.

It is recommended to use heat-resistant materials, in particular concretes based on aluminate
cements and refractory steels, for critical structures. To reduce the effects of thermal expansion,
expansion joints should be designed in large concrete structures. In addition, the calculation of
thermal stresses using numerical simulation (FEM) is necessary to assess the durability of materials.
Thus, numerical simulation of thermal effects allows for an accurate assessment of the behavior of
building materials and predict their durability in changing climatic conditions.

Using machine learning to predict material degradation. The application of machine learning
(ML) methods allows to increase the accuracy of predicting the degradation of building materials and
optimize their durability. These methods are successfully integrated with numerical approaches, in
particular the finite element method (FEM), providing a comprehensive assessment of the state of
structures under the influence of various loads (seismic, thermal, corrosion) [12].

The mathematical foundations of degradation prediction using ML to predict the level of
degradation of building materials using machine learning methods by building a regression model:

Dyred = WF, +W,F, +W;F +w,T, (16)

Dpred — predicted material degradation (in % or conventional units);

Fs — intensity of seismic loads (e.g. peak ground acceleration);

Fc — degree of corrosion (expressed as a percentage of the loss of reinforcement cross-section);

Ft — the effect of thermal loads (temperature cycles);

T — operating time of the structure (years);

W1,W2,W3,W4 — Weighting factors, which are determined by training the model on experimental
data.

According to the results of [5], weighting factors are determined by multifactorial regression
analysis of historical data, which ensures the adaptability of the model to different types of structures
and operating conditions.

Neural networks allow predicting the behavior of materials and structures, revealing complex,
nonlinear relationships. Deep neural networks (DNNSs) are effectively used to predict the degradation
of building materials:

y= f(gwimbj, (17)

y — predicted level of degradation;

Xi — input factors (temperature, corrosion, seismic loads);

wi — weight coefficients determined during the training process of a neural network;
b — bias coefficient (bias).
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The model is trained on experimental data obtained using sensors located on real objects, which
ensures high accuracy of predictions [17].

Statistical metrics such as the coefficient of determination (R2) and mean square error (MSE)
are used to assess the accuracy of machine learning predictions:

> (-9 .
R? =1L MSE ==>"(y, - ¥,)°,
2 (-9 e (18)

yi — real degradation values obtained experimentally;
y,— predicted values;

y —average value of real degradation;

n —number of observations.

These indicators allow us to quantify the deviation of the model from real data and adjust the
learning algorithms [16].

As shown in Figure 2, the use of neural network models provides the highest prediction

accuracy among the considered methods, especially in the case of a large number of interacting load
factors.

2

1,5
1

s 0 m
0

Regression Model Deep Neural Network Recurrent Neural Network
(DNN) (RNN)

B Accuracy R2, ()  mStandard deviation, MPa™2

Fig. 2. Comparison of the effectiveness of machine learning algorithms

The integration of numerical methods and machine learning models with 10T allows for real-
time monitoring of the condition of building structures. 10T sensors collect data in real time, which
increases the efficiency and accuracy of predicting material degradation. This allows for rapid
response to threats, timely repairs or reinforcement of damaged structures.

Research in the field of resource-saving technologies allows to reduce costs when restoring
structures damaged by military actions. The following approaches are used:

¢ Using recycled materials for repairs, which reduces costs without reducing reliability.

¢ Reinforcement with composite materials, which have better strength characteristics at lower
weight.

e Rapidly assembled modular structures for the installation of civil defense protective
structures, which allows you to quickly ensure safe operating conditions for damaged facilities.

The graph in Figure 3 presents a comparison of machine learning methods for predicting the
degradation of building materials according to two main accuracy criteria: root mean square error
(MSE) and coefficient of determination (R?).
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Fig. 3. Comparison of the accuracy of predicting the degradation of building materials by
different ML methods

The lowest MSE value (2.1) and the highest coefficient of determination value (R? = 0.92) are
demonstrated by the deep neural networks (DNN) method, which indicates its high accuracy and
reliability in predicting nonlinear patterns of material degradation. Linear regression has the largest error
(MSE = 5.3) and the lowest prediction accuracy (R? = 0.76), which emphasizes the limited suitability of
this method for complex prediction problems. Gradient boosting (XGBoost) and decision trees
demonstrate intermediate indicators, which makes them acceptable for problems with less complex
nonlinear dependencies. Therefore, it is advisable to use deep neural networks for predicting the
durability of building structures, which provide the highest accuracy among the considered methods.

The proposed numerical methods, combined with machine learning algorithms and integrated with
loT, allow for accurate prediction of the degradation of building materials, providing prompt diagnostics
and saving resources during the repair and restoration of structures, especially in conditions of increased
risk. Further research in this direction will allow for even more effective solutions to the problems of
predicting and preventing the destruction of structures, especially in areas of active fighting [12].

Validation of numerical models. Validation of numerical models is a critical step in the process
of their development and implementation. To confirm the accuracy of the models, it is necessary to
conduct experimental comparisons of the predicted and actual characteristics of building materials
under the influence of various types of loads.

Validation of numerical models is carried out using the following approaches:

o Comparison with experimental data — verification of predicted values using laboratory tests
on material samples.

e Deviation analysis — determination of the average and maximum difference between
numerical and real data.

¢ Correlation analysis — determination of the degree of relationship between numerical and
experimental values.

e Compliance criteria (coefficient of determination Rz, root mean square error RMSE, mean
absolute error MAPE) — statistical assessment of the accuracy of predictions.

The experimental tests conducted allowed us to determine the accuracy of numerical models in
predicting the behavior of materials under complex loads. The results of the comparison of numerical
and experimental data are shown in Figure 4.

The maximum deviation of numerical predictions does not exceed 2.8%, which indicates high
accuracy of modeling. The high correlation between numerical and real data confirms the
effectiveness of the proposed approaches.
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Fig. 4. Validation of numerical models

The following statistical indicators were used to assess the accuracy of numerical models:
The root mean square error (RMSE) is determined by the formula:

/1 n .
RMSE = EZ(M - yi)21 (19)
i=1
yi — experimental values;

y. — values predicted by the numerical model;

n —number of measurements.
The coefficient of determination (R?) is:

R2 . Z(M _yi)Z (20)
> 5-9)

y —the average value of the experimental data.
The mean absolute percentage error (MAPE) is calculated:

04 N —_\
MAPE = 190% 3= |, (21)
n = Y ‘

These criteria allow for a comprehensive assessment of the accuracy of numerical models under
different conditions.

Figure 5 presents a comparative assessment of the accuracy of numerical models: the finite
element method (FEM), the boundary element method (BEM), and the finite difference method
(FDM). The assessment was carried out using three criteria: root mean square error (RMSE),
coefficient of determination (R?), and mean absolute error (MAPE, %).

As the graph shows, the finite element method (FEM) provides the lowest RMSE (0.52 MPa) and
MAPE (1.8%), as well as the highest coefficient of determination R* (0.97). This indicates its high
accuracy in predicting the behavior of building materials and structures compared to other methods. The
largest errors are observed in the finite difference method (FDM), which may indicate the limitations of
its application for modeling complex loads and operating conditions of structures. Thus, based on the
results obtained, it can be concluded that the finite element method is superior in predicting the durability
of building materials and is recommended for widespread use in practical calculations.

Based on the analysis of the accuracy of numerical models, the following practical
recommendations can be formulated:

o Numerical models demonstrate high accuracy, providing a maximum deviation of no more
than 2.8% from experimental data.
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Fig. 5. Assessment of the accuracy of numerical models

¢ The finite element method (FEM) is the most effective method for predicting the durability
of building structures due to its high accuracy and versatility.

e The results of experimental validation confirm the applicability of numerical methods for
assessing the condition and predicting the durability of materials and structures.

e Further research should focus on adapting numerical models to more complex operating
conditions, such as long-term corrosion effects, repeated loading cycles, and other complex factors.

Thus, the use of numerical modeling allows us to accurately predict the residual life of building
structures and make informed decisions regarding their repair, reinforcement, and operation.

Conclusions. The conducted studies confirm that numerical modeling methods are effective tools
for assessing and predicting the durability of building materials and structures under complex loading
conditions, including seismic, thermal, mechanical and corrosion effects. The most accurate of the
numerical methods is the finite element method (FEM), which provides a high level of prediction
accuracy (R*=0.97) with minimal errors (RMSE=0.52 MPa, MAPE=1.8%).

The use of machine learning (ML) methods further increases the efficiency of assessing the
degradation of building materials. Deep neural networks (DNN, R?=0.92, MSE=1.25) and gradient
boosting (XGBoost, R>=0.89, MSE=2.15) demonstrate the best results due to their ability to take into
account complex nonlinear dependencies. At the same time, linear regression has a significantly lower
accuracy due to its inability to describe the nonlinear behavior of materials. Integration of ML
technologies with 10T systems allows you to create dynamic monitoring systems that quickly update
numerical models in real time, ensuring timely response to potential threats.

Resource-saving technologies play an important role in the processes of restoring structures after
war damage. Their use, in particular the use of secondary raw materials, composite materials, and
modular protective structures, allows for a significant reduction in the time and material resources spent
on restoring damaged buildings.

The experimental validation of numerical models showed a high correspondence of the predicted
data to the experimental results, with the maximum deviations not exceeding 2.8%, which confirms the
practical value of the obtained results. Further scientific research should be focused on the creation of
hybrid models that combine the advantages of numerical methods and ML algorithms, the study of the
behavior of new materials (composites, nanomaterials), as well as the improvement of automated
systems for monitoring and forecasting the technical condition of building structures in real time.

Thus, the presented results are of great importance for improving the safety, reliability, and
efficiency of building structures, especially in conditions where there are significant risks of complex
loads and the possibility of military damage.
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Anoranmisi. CTaTTs TpHCBSIYEHA aKTyaJlbHOMY IIMTAHHIO IPOTHO3YBAHHS JIOBIOBIYHOCTI
OyIiBeIbHUX MaTepialiB 1 KOHCTPYKIH, IO 3a3HAIOTh BIUIMBY KOMIUIEKCHHMX OaraTo(haKTOpPHHX
HaBaHTa)XEHb, Cepe/l IKMX MEXaHIYHi, TEPMiuHI, CeHCMIYHI Ta KOpo3iiHi. CyJacHi TCHJICHIIT PO3BUTKY
OyIIBHHUIITBA, OCOOJIMBO Y 30HAaX IiIBUICHOIO PU3HKY BOEHHUX PYHHYBaHb 1 IPUPOJIHUX KATaCTPOd,
IOTPEOYIOTh CTBOPEHHS HAYKOBO OOIPYHTOBAHUX METOIMK OIIHKHM CTaHy MaTepialliB Y pealbHUX
yMOBaXx eKcIutyaramii. ¥ poOOoTi MpoBeICHO IPYHTOBHHUI aHANI3 YKMCEIBHUX METOIB MOJICIIOBAHH,
cepell AKUX LIEHTpallbHe Micle 3aiiMae Merton KiHueBux enemeHTiB (MKE). Came BiH 3a0e3meuye
JeTajai30BaHe BIATBOPEHHS HANPYKEHO-Ae(hOPMOBAHOIO CTaHy Ta J03BOJIIE€ BPAaxXOBYBATH HEJIHIMHI
B3a€MOJIIi MIXK PI3HMMH BHJIaMH HABaHTA)KCHb, 1110 € BU3HAYAILHUM JJII KOPEKTHOTO IMPOTHO3YBaHHS
noBropiyHocti. OcoONMBY yBary NpPHIUICHO alTOpHTMaM IHTErpaiii MeXaHIYHHX, CEHCMIYHHX 1
TEPMIUHUX BIUIMBIB y €IMHY MOJCIb Ta BHKOPHUCTAHHIO KOMOIHOBAHHX ITiJIXOMIIB, 30KpeMa METOIy
IPaHUYHHUX EJIEMEHTIB, MeToay MonTe-Kapno i CKiHYECHHHMX pIi3HHUIb. 3allpOIOHOBaHI aBTOpaMHU
YHCeIbHI CXeMHU OyJIM Balli{lyBaHiI Ha €KCIICPUMEHTAILHUX JAHMX, IO MIATBEPAMIO BUCOKY TOYHICTh
PO3paxyHKIB, BIIXWICHHS SKHX HE IEPEBHINYE KUIBKOX BIiFACOTKIB. Jl0JJaTKOBMM i1HHOBAIIHHUM
aCIEKTOM JIOCHI/DKEHHS CTaJI0 IIO€AHAHHSA KIACUYHUX 4YHCEIbHUX METOMIB 13 TEXHOJOTISIMU
MAaIIMHHOI'O HaBYaHHS, BKIIIOYHO 3 IITMOOKUMHU HEHPOHHUMH MEPEKaMU, K1 JO3BOJISIOTH BPaXOBYBaTH
CKJIaJIHI HEJIIHIMHI 3aKOHOMIPHOCTI Ierpajallii MaTepiaiiB y yaci. 3HauHe Miclie y poOoTi 3aiiMac aHai3
MOJKJIMBOCTEH 1HTErparii 4YrhceIbHUX MOJENEH 13 chucTeMaMy MOHITOPHHIY Ha OCHOBI ceHcopiB IoT.
Takmii migxig 3a0e3reuye AMHAMIYHHN KOHTPOJb TEXHIYHOTO CTaHY OYIIBEIbHHUX KOHCTPYKIUH Y
peabHOMY Yaci Ta CTBOPIOE YMOBH JIJISl CBOEYACHOT'O BUSIBJICHHS KPUTHYHUX BiaxwieHb. [TokazaHo, 1m0
BUKOPHUCTAHHS IMOAIOHUX aJTOPUTMIB Ja€ 3MOTY HE JIMIIE MiJABHINATH TOYHICTH IPOTHO3YBaHHS
3aJTUIIIKOBOTO PECYPCY, a M ICTOTHO CKOPOTHTH BHTPATH 3aBISKH BIIPOBAKCHHIO PECYPCOOIIATHUX
TEXHOJIOT1H BIJIHOBJICHHS. Y BHUCHOBKAaX BH3HAYCHO HAIPSIMH MOAAIBIIMX JAOCTIKCHB: PO3IITUPESHHS
METOJIMK YHCEIBHOIO MOJECIIOBAHHS JUISI HOBHX BHCOKOC(EKTHBHHX MaTepialliB, yJIOCKOHAJICHHS
METO/IiB MAIIMHHOTO HaBYaHHS, a TAKO)K CTBOPEHHS IIOBHICTIO aBTOMATU30BaHUX CHCTEM MOHITOPUHIY
Ta MPOTHO3YBAHHS TEXHIYHOTO CTaHy Oy11BEIbHUX KOHCTPYKIIH.

KirouoBi cioBa: mporHO3yBaHHS JOBTOBIYHOCTI, KOMIUIEKCHI HAaBaHTaXEHHS, METOJ
KIHIIEBUX €JIEMEHTIB, MallTHHHE HAaBYaHHS, HEHPOHHI MEPEXKi, PECYpPCOOIIATHI TEXHOJIOTI.
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